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Abstract

Image-based relighting (IBL) is a technique to change the illumination of an image-based ob-
ject/scene. In this paper, we define a representation called the reflected irradiance field which records
the light reflected from a scene as viewed at afixed viewpoint as aresult of moving a point light source
on aplane. It synthesizes a novel image under a different illumination by interpolating and superim-
posing appropriate recorded samples. Furthermore, we study the minimum sampling problem of the
reflected irradiance field, i.e.,, how many light source positions are needed. We find that there exists
a geometry-independent bound for the sampling interval whenever the second-order derivatives of the
surface BRDF and the minimum depth of the scene are bounded. This bound ensures that when the
novel light sourceison the plane, the error in the reconstructed imageis controlled by agiven tolerance,
regardless of the geometry. We also analyze the bound of depth error so that the extra reconstruction
error can also be governed when the novel light source is off-plane. Experiments on both synthetic and
real surfaces are conducted to verify our analysis.

Keywords: sampling, BRDF, light field, Lumigraph, plenoptic functions, image-based rendering, re-
lighting

1 Introduction

To achieve realism, traditional geometry-based computer graphics makes use of sophisticated physics-
based light transport models, precise geometry and complex rendering algorithms. However, unless care-
fully tuned, most computer-generated images still can be distinguished from real photographs. As an
aternative, IBMR (Image-based M odeling and Rendering) synthesizes images from pre-recorded images,
which can be real photographs. It employs a collection of reference images as samples of the plenop-
tic function [2] so that the rendering process simply becomes ray query, interpolation and composition.
Photorealistic images can be efficiently synthesized without a complex and long rendering process.
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Much of the previous work in IBMR assumes that the lighting condition is fixed and the surface is
Lambertian. Obviously, these assumptions cannot fully satisfy computer graphics needs, since illumina-
tion modification is a key operation. Image-based relighting (IBL) is a technique to change the illumina-
tion of an image-based object/scene. The goal isto modify theillumination in an interactive fashion while
preserving correct visual appearance. This presents an important and challenging problemin IBMR.

In this paper, we propose a representation of the plenoptic function called the reflected irradiancefield
for IBL. The reflected irradiance field stores the reflection of surface irradiance when a point light source
moves on a plane. With the reflected irradiance field, the relit object/scene can be synthesized smply by
interpolating and superimposing appropriate samplereflections. If the geometry is not available, theimage
can be relit by arbitrary combination of point light sources on the plane. If the geometry is available, the
luminaire can be of any kind, including directional light sources.

Like IBMR, IBL is a problem of sampling and reconstructing the plenoptic function. Though for
IBMR, the sampling problem of the light field [22, 15] has been studied by Lin and Shum [23] and Chai
et al. [6], no previous work has addressed the sampling problem of IBL. Clearly, the sampling criteria
of relighting and that of the light field are different. Light field rendering is a view interpolation tech-
nique. Therefore, its sampling is more related to geometry, though the complex lighting effect are also
recorded by the light field. In contrast, sampling in relighting is more concerned with surface reflectance.
In this paper, we present a theoretical analysis on the sampling and reconstruction problems of the re-
flected irradiance field. We find that there exists a geometry-independent sampling bound that controlsthe
reconstruction error when the light source is on the sampling plane. Finally, we study the reconstruction
error when the light source |leaves the plane and propose the depth layers for geometry recovery.

Therest of our paper isorganized asfollows. Wefirst review some related previouswork in Section 2.
The definition of reflected irradiance field is presented in Section 3. In Section 4, we present a theoretical
analysis on the problem “ how many samples are sufficient for on-plane relighting?” In Section 5, we
proceed to study the problem “ how much depth information is sufficient for off-plane relighting?” Then,
experimental results are presented in Section 6. Section 7 extends our analysis to the case of directional
light sources. Finally, we draw conclusions and suggest future directionsin Section 8.

2 PreviousWork

Recently, much work has been done in the area of IBMR. It can be regarded as solving the problem of
sampling and reconstructing the plenoptic function [2], as pointed out by McMillan and Bishop [27].
To reduce the data volume, many researchers have worked on bringing down the dimensionality of the
plenoptic function, ranging from five to two dimensions [27, 22, 15, 36, 7].
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Although there are advantages to reducing the dimensionality of the plenoptic function, there are also
reasonsto increaseit [39]. Sincethe origina formulation of the plenoptic function assumesthat lightingis
constant, theillumination of generated imagesisalso fixed. Thislimitation hampersthe further application
of IBMR. However, this limitation can be overcomed by increasing the dimensionality of the plenoptic
function, using extra parameters to represent the distribution of light sources.

There are severa approaches for changing the lighting condition. Haeberli [16] relit scenes by super-
imposing images. However, the direction, the type and the number of the light sources are limited to the
original lighting setup during the scene capture. Using higher dimensional plenoptic functions, Wong et
al. [40] could both change the lighting (relight) and move the viewpoint. Similarly, Debevec et al. [9] also
defined a variant of the extended plenoptic function called the reflectance field to represent the radiance
reflected from human face where dense samples were captured and interpolation was ignored. Yu and
Malik [42], Yu et al. [41] and Sato et al. [34] endeavored to recover the surface BRDF and approximate
geometry. In[12, 25, 13], the shadows are more carefully treated, but only Lambertian BRDF is assumed
in their global illumination computation. In [26], Magda et al. tried to recover the object geometry, in-
stead of surface BRDF, by taking images of an object when a point light source moves on two concentric
spheres enclosing the object. Unlike the above approaches, singular value decomposition [14] was applied
to extract a set of basis images [43], where novel images were obtained by linearly combining the basis
images.

Unfortunately, most of the previous work ignored the error analysis of sampling and reconstruction.
Though the relit images were visually appealing, the correctness was never ensured. As an exception,
superposition by steerable functions [29] is exact for Lambertian surfaces, but it is limited to empirical
cosine illumination models. The study on the related sampling issue is rare. Amanatides [3] proposed an
anti-aliasing algorithm that based on Phong model for specular highlight by clamping the parametersin
the Phong model. Assuming that the object is convex and Lambertian, Belhumeur and Kriegman [4] have
shown that three images are sufficient to relight the scene under various directional light sources.

This paper isan extension of our previouswork [24]. We propose the reflected irradiancefield for IBL.
Its concept is close to that of apparent BRDF [40] and the reflectance field [9]. The apparent BRDF and
the reflectance field use a directional light source, while our reflected irradiance field adopts a point light
sourcethat moveson aplane. Our rationaleisthat sampling with point light source can be easily realized in
real world. Nevertheless, our analysis can be easily applied to the apparent BRDF and the reflectance field
when the light source planeis at infinity. When we study the sampling issues and reconstruction errorsin
our framework, we try to keep our analysis geometry-independent and to consider general BRDF.
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3 TheReflected Irradiance Field

3.1 Tri-planar Parameterization and Its Simplifications

Adelson and Bergen have proposed a multi-dimensional plenoptic function [2] for evaluating low-level
human vision models. The function describes environment appearance that our eyes observe. Besides the
parameters for viewing direction, the center of projection and the wavelength, atime parameter is used to
model al other unmentioned factors, such as the change of illumination and the change of environment.
When it is constant, the scene is static and the illumination is fixed. Techniques[27, 15, 22] based on this
model naturally inherit thisrigidity. However, the ability to modify the illumination configuration is very
important in computer graphics. To express the change of illumination, we may extract an illumination
component from the aggregate time parameter and explicitly specify it [39].

In general, the illumination component is a high dimensional function. It is necessary to assume a
specific type of light source in order to reduce the dimension. Usually, directional light sources are used,
such asthe apparent BRDF of pixelsin[40] and thereflectancefield in[9]. They are ssmpleand convenient
for syntheticimages. However, they pose practical difficultiesin capturing large object/scene because they
are usually approximated by positioning strong spotlights at a distance that greatly exceeds the size of the
object/scene. A point source, on the other hand, can be reasonably approximated by a tiny yet strong
light bulb, such as a halogen bulb, which need not be placed far away. Because of this advantage, we
utilize point light sources instead of directional sources like previous approaches [40, 9]. Nonetheless,
our analysis on sampling can be extended to the directional-source case. The extension is presented in
Section 7.

The mgjor disadvantage of the point-source formulation is that three parameters (rather than just two
for the directional-source) are needed. To reduce the dimensionality, we constrain the point light source
to lieon a 2D light-source plane. Hence only two parameters (¢, r) are needed. This approach isinspired
by the light field [22] and Lumigraph [15].

Then our extended plenoptic function can be represented by three planes (Figure 1). The viewpoint
is constrained to lie on the camera plane (uv plane) while the point light source is constrained to be on
the light-source plane (¢r plane). Together with the object plane (st plane), this representation requires
six parameters. Each captured value in the six-dimensional table represents the light reflected through the
window (s, ¢) and received at a certain (u, v) when the scene isilluminated by a point source positioned
a (q,r).

It is apparent that the tri-planar representation reduces to afour-dimensional light field and Lumigraph
if the lighting condition is fixed (Figure 1(b)). On the other hand, if the viewpoint (u,v) is fixed, the
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Figure 1. The tri-planar configuration and the dual light slab parameterization. (a) Each captured value
representsthe radiance reflected through (s, t) and received at acertain (u, v) when the sceneisilluminated
by a point source positioned at (¢, ). (b) The light field is parameterized by the viewing vector. (c) The
reflected irradiance field can be concelved as being parameterized by the light vector.

tri-planar representation reduces to another four-dimensional function (Figure 1(c)), which we call the
reflected irradiancefield. 1t records the reflection of irradiance (w.r.t. the surface element) due to different
light source positions.

3.2 Redlighting

Therectilinear structure of reflected irradiance field allows usto simplify the relighting process. When the
light source is on the ¢r plane, to determine the radiance received at a given (u, vy) reflected from (', ¢')
with light at (¢', '), we can linearly interpolate the values of the nearest neighbors in the 4D reflected
irradiance field (Figure 2) in a pixel-by-pixel manner. Thisinterpolation processis similar to that in light
field and Lumigraph rendering. Generally speaking, the interpolation is quadri-linear becauseit isbilinear
in both st and ¢r. If the resolution of the output image is the same as that of the input images, then the
interpolation reduces to bilinear interpolation in ¢r. Real-time relighting [1] can be done by utilizing the
bilinear interpolation module in texture-mapping hardware in the similar fashion asin [15]. Figure 2(b)
shows the schematic diagram illustrating the linear interpolationin (¢, r, s, t). Moreover, theimage can be
relit by various combinations of point light sources on the ¢r plane different from the one used during the
scene capture thanks to the linearity of light transport. The utilization of this superposition property can
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Figure 2: Relighting is done by bilinearly interpolating neighboring radiancesin a 4D reflected irradiance
field.

be also found in [35, 29, 40]. However, when the light source is not on the ¢r plane, the squared-distance
attenuation of light energy must be considered in the synthesis process, and hence the need of geometry is
apparent.

Sincetherelit image is synthesized from the sampled ones, it isvery likely that there is reconstruction
error. If the novel light source is on the ¢r plane, the interpolation error is ensured to be smaller than a
giventolerance. Thiswill be studied in detail in Section 4. However, if the novel light source is off-plane,
the error will increase due to the lack of scene geometry. Similar phenomenon also occurs in the light
field/Lumigraph [22, 15]. Figure 3 illustrates the sources of error. As the actual depth of the scene is
often unavailable during relighting, the object is often assumed on a constant-depth plane [19, 6, 23]. In
the simplest case, the constant-depth plane is assumed to be the st plane. Hence the light gray pair of
(q,r,s,t) isretrieved for interpolation, even though the correct one should be the dark gray pair. In the
case of view interpolation, the error is solely due to this incorrect ray query. However, in the case of
relighting, the interpolation weight is also incorrect because the intersection point on the ¢r plane will be
mistakenly calculated as the light gray dot. The correct intersection point should be the dark gray dot.
The incorrect intersection point not only induces incorrect interpolation weights, but may also result in
wrong samples being chosen for interpolation. Moreover, due to the distance-square falloff of illumination
intensity, the attenuation will also be incorrect because the true distance d;.,. from the novel light source
isunavailable.

Off-plane relighting using geometry is only an approximation as it does not consider global illumina-
tion. Nevertheless, we can still study the behavior of the error when the global illumination is ignored.
We call this error the off-plane error. The details will be presented in Section 5. Here we only illustrate

the error due to off-plane relighting through a simple example in Figure 4 (a), where a planar object is
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Figure 3: The sources of error when the novel light source is off-plane: incorrect ray query, interpolation
weight, sample reflections and attenuation.
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Figure 4: (a) The error map when the novel light source is off-plane. Darker color indicates the error is
high while white indicates the error islow. (b) The plots of the errors at the right end (upper curve) and
the center (lower curve) of the error map as afunction of distance from the ¢r plane. Note that both curves
reach their maximumsaround — 3 2* = —0.5.

positioned at z* w.r.t. to the ¢r plane and the camerais placed close to the ¢r plane and facing the scene.

The off-plane error appears only when the assumed constant-depth plane is not coincident with the
true object and the novel light source moves out of the ¢r plane. In Figure 4(a), the maximum off-plane
error at different off-plane light source positionsis indicated by grayness. The darker the graynessis, the
larger the error is. When the novel light source is very closeto the gr plane, the error isvery small. Asthe
light source moves farther away, the error increases on the left and right hand sides, but the error behind
the camera only increases dightly. The error reaches its maximum around the line of —z* /2 (Figure 4(b)).
Then it decreases when the novel light source moves farther away. The decrease is due to the squared-
distance falloff.
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Table 1: Nomenclature

E exposure of apixel

I; irradiance through a pixel

I, radiance of a surface point

I, 1, intensity of point and directional light sources

At,AF, f exposure time, area of aperture and focal length of the camera

d distance between the light source and the surface point

z perpendicular distance to the light source plane

« incident angle w.r.t the optical axis of the camera

p BRDF

N,L,V normalized surface normal, inverse light vector, and viewing vector
{N,M, P} form the local frame at a surface point

Z unit vector perpendicular to the light source plane

(u,v), (s,t),(q,r) coordinates on the camera, object, and light source planes

(01,05, 05), (1,15, v3) local coordinates of L and V

(n1,n9,n3), (11,15, 15)  global coordinates of N and L

O} = pl>d =2, depends on geometry and light source position

1, Co constants for point and directional light sources

By, By, By geometry-independent upper bounds of |d%®|, |d3%—‘;’|, and |‘g;‘§ |, respectively

4 Sampling Analysisfor Relighting

Obvioudly, the quality of the interpolated image depends on the sampling rate. However, it is difficult to
answer the question how many samples are enough to avoid aliasing? There are three sampling rates to
consider, one for each plane. The sampling rate on st depends on the required resolution of the desired
image. Thetricky part isthe sampling of uv and ¢r. Lin and Shum [23] and Chai et al. [6] have addressed
the sampling issue on the uv plane for view interpolation. In this paper, we first address the question of
how many samples are enough to avoid noticeable artifacts in a relit image? Our goal is to determine
the maximum allowable sampling interval on the ¢r plane such that the intensity error in the relit image
is smaller than atolerance. Since incorrect geometry information can also cause aliasing when the light
source is not on the ¢r plane, in the next section we move on to study the problem of how much depth

information is sufficient for correct relighting?

4.1 Background

We assume a pin-hole camera, with afinite aperture to collect enough light. Asthe treatment of global il-
lumination, such as cast shadow, interreflection and subsurface scattering [17], requires substantial knowl-
edge of geometry and the rendering algorithms are generally complex [35, 13, 25, 12, 42, 41, 34], our
analysis focuses on local reflection. The major assumption in our analysis is that the BRDF (p) in the
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Figure 5. A graphical illustration of parametersin the analysis.

scene must be second-order differentiable and the second-order derivatives are bounded. It is areasonable
assumption because a wide range of reflectance models (both physical and empirical) satisfy this assump-
tion, including the Lambertian model, the Lafortune model [21], Ward's anisotropic model [38] and Oren
and Nayar’s non-Lambertian model [30]. Moreover, an ordinary camera acts as a low-pass filter since its
resolution is finite. Hence our assumption may be relaxed to those BRDF models that are only first-order
differentiable. To simplify the following analysis, we shall not take the camera resol ution into account.

As the camera records exposure instead of radiance directly, we move on slightly to exposure. Refer-
ring to Figure 5, the exposure at the pixel of A is:

where I; is the irradiance received through the pixel window associated with A and At is the exposure
time. Asshown in [18], I; isrelated to the intensity of the light source as follow:

I =cos' aAFf?L,, and I, = p(ly, lo; vy, v0)lad 2]},

where « istheincident angleat C w.r.t. the optical axis of the camera,
AF isthe area of aperture,
f isthe camerafocal length,
I, isthe reflected radiance at A towards C,
p isthe surface BRDF,
d isthe distance between the light source and the surface element,
I, isthe intensity of the light source, and
(¢1,¢5) and (v, v,) are the local directional coordinates of L and V w.rt. the local frame
{N,M,P} a A respectively (P is not drawn in Figure 5 since it is perpendicular to the
paper).
Hence

E =194y, la; 101, 13),
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where
c1 = LAFAtf 2, ®(ly, by v, 1) = p(Ly, by v, v5)lad 2

cos* o disappears because most cameras are designed to eliminate the diminishing artifact introduced by
it and the field of view (FOV) of cameras are often small.

As ¢, is constant throughout our analysis, the change of exposure depends on ® only, which is a
function of the light source position (¢, ). Therefore we analyze how ® changes as the point light source
moves on the gr plane.

4.2 Problem Formulation

When a novel point light source is positioned on the ¢r plane but not at any sample point, the exposure
can be interpolated by those recorded values from neighboring ¢r grid points. Throughout the analysis,
bilinear interpolation is assumed to be used for reconstruction since it is simple and can yield satisfactory
image quality.

To simplify the discussion, we now look into the 1D interpolation along dimension ¢ (Figure 6). Then
the bilinear interpolation becomes

- I

E(q) = E[AE(CD) + (1= NE(q1)],

where ¢ isthe position of the novel light source,
I isthe emitted radiance from the novel light source, and

A=lq —ql/lgr — al.
Given an error tolerance ¢, we want to find the maximum allowable spacing between samples along

the ¢g-axis such that the difference between every reconstructed exposure and the true exposure is smaller
than . Obviously F isnot band limited as a function of ¢q. Therefore, if the exposure is treated in a con-
tinuous manner, it is usually impossible to exactly reconstruct the reflected irradiance field from discrete
samples. However, exact reconstruction is unnecessary due to quantization, or the mapping from exposure
to discrete greylevels. If the greylevel corresponding to the interpolated exposure isidentical to that of the
exact exposure (signal-level reconstruction) or the difference is not visually noticeable (perception-level
reconstruction), we may still say that the reflected irradiance field is perfectly reconstructed. Hence the
sampling problem can be formulated mathematically as follows:
Find the maximum allowabl e spacing Ag between the sampling grids, such that

IAE(q1) + (1 = N)E(g2) — E(q)| <&, VA, and¥(q1, g2, q) satisfying
0<qp—qg <Agandg¢ <q < .
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Figure 6: To reconstruct the exposure when anovel light sourceis positioned at ¢, linear interpolation (1D
case) is done among neighbors.

4.3 Geometry-lIndependent Sample Spacing

We find that there exists a geometry-independent bound for the ¢ sampling interval whenever the object
BRDF is second-order differentiable and the second derivatives are bounded. As long as the sampling
interval does not exceed the bound and the novel light source lies on the ¢r plane, the reflected irradiance
field can be correctly reconstructed within prescribed error without knowing any geometric information,
such as depth and normal. This isimportant because surface reflectance depends heavily on the normal
and acquiring accurate normal is even harder than acquiring depth.

For a pixel of interest, as we move the light source along the ¢-axis, the radiance and hence the
exposure changes. We can plot the captured exposure as a function of ¢. Figure 7 shows the plots for two
specific pixelsin the left image. Given a tolerance ¢, one can find an optimal sampling interval Aq; for
each specific curve such that the difference between the linearly-interpolated value and the true value is
smaller than . For example, in Figure 7, the optimal sample spacing for pixel ‘a’ is Aqq, whileitis Ag,
for pixel ‘b’. The difference in the shape of the curve may due to the surface normal orientation of the
surface element visible through the pixel, the distance from the surface element to the light source, and
the reflectance difference.

If we find the minimum sample spacing among all possible Aq (i.e. al possible combinations of
normal orientation and depth), we can ensure that the reconstruction is correct (within atolerance) without
knowing the geometric details of the scene. All we need to know is the BRDF and the minimum distance
Zmin (S€€ Figure 6) between the object and the ¢r plane. In the following, we show that for BRDFs with
bounded second-order derivatives, the bound is positive.

From interpolation theory [37], there exists G € [q1, ¢2], such that



Special Issue on Multi-View Modeling and Rendering of Visua Scenes/ 1JCV 12

Figure 7: An exposure curve can be plotted for each pixel in the image as the light source moves along q.
The blue curve isfor the pixel marked by the blue box, while the purple oneis for the pixel in the purple
box.

AB(@) + (1= VE(@) — B@) = 50— a)(e — 0232,
Therefore,
B+ (- NE) - P < 5 [T E =0 0 fagran, @
where 2
By = G.l. max a@% ,

or the geometry-independent upper bound of ‘9%%. Put in other words, B, is the maximum value of
% | for all possible positions of the light source and all possible positions and orientations of A.

Let us denote %Z‘E as ®” for smplicity. For a general BRDF, we can prove (see Appendix A), by a
hybrid method of numerical computation and analytical deduction, that if the second-order derivatives of

the BRDF are bounded, then:

" <

4

min

z £1,l2,v1,V

where p’ and p" are 1st-order and 2nd-order partia derivatives of p, respectively, and
Zmin 1S the minimum depth of the scene w.r.t. the ¢r plane.

From the above equation, we know that the geometry-independent upper bound of the sampling inter-
val exists. Unfortunately, usually the analytic bound is much larger than the exact bound, except for the
Lambertian bound shown below. Therefore, it isbetter to find the bound by direct numerical computation.
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In our experiments, we simply performed afull search to find the maximum value of " under all possible
positions and orientations of surface point. One trick is that searching along depth is unnecessary. The
exact bound must be attained when the depth of the surface element is z ;..

Substituting ®” into Equation 1, the sufficient bound for Ag (sample spacing) is.

8¢
0132 ’

Ag < ©)

It can be seen that the sampling bound istightly rel ated to the maximum magnitude of the second-order
derivatives of the BRDF. With the geometry-independent bound, we can use identical sampling intervals
on the ¢r plane to sample the reflected irradiance field, regardless of the actual geometry. Next, we show
the bounds of two popular reflectance modelsin computer graphics.

4.3.1 Lambertian Bound
For Lambertian surfaces, p = py < 1/7. After some manipulation, we have

(I)” — %(_62 — 2n1l1 + 5€2l%)a

where (ny,ny,n3) and (I, I, I3) arethe directions of N and L, respectively.

Since
—ly — 2nyly + 5005 = ny (=3 + 5I1) 11 + no(—1 + 512)ly + ng(—1 + 512)1s,

|L| = 1,and |N| = 1, using Cauchy’s inequality, we have

| = € — 2010y + 5602] < \J[(=345) L2+ [(—1+5) L2 +[(—1+5B) )2 = \/5lf — 203 + 1

Therefore
"] < h(q) = %\/51% — 202 4 1.

Taking the partial derivative of h(q) shows that

max{h(q)} = h(q)ln=o,
hence
G.l. max |®"| = 3pp(2min) "

The equality holds because the right-hand side is attainable, as the example shown bel ow.
To understand the physical meaning of ®”, we plot it against ¢ for a specific Lambertian (py = 1/pi)
surface element. The element is one unit distant from the ¢r plane and its normal is facing the ¢r plane
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Figure 8: Illustration of ®” for different surface properties. (a) A specific surface element considered. (b)
®" of Lambertian surfaces. (c) ®” of Lafortune surfaces.

(Figure 8(a)). Intuitively, " can be regarded as the “acceleration” of radiance. As shown in Figure 8(b),
the radiance accel erates slightly asthe light source moves closer to the surface element. It then decelerates
quickly as the light source movesto the center of the ¢r plane. In thisexample, G.I. max |®"| is attained
when ¢ = 0.

4.3.2 Lafortune Bound

Another model of interest is the Lafortune model [21] because of its capability of modeling a wide range
of reflection phenomena, including diffuse, specular, off-specular, non-Lambertian, anisotropic and retro-
reflection.

In the Lafortune model,

p(lr, o v, 1) = Z(Ci,lglyl + Ci2lovs + Ci,3£37/3)ki;

2

where (¢, (5, ¢3) and (v, 1o, v3) are the coordinates of the normalized vectors L and V in the
local frame {M, N, P} respectively,
1 isthe index of cosine lobe, and
Ciq, Cio and C; 3 are the parameters defining the nature of surface reflectance.

An analytic upper bound of G.I. max |®”| in the case of the Lafortune model is:
By < (zmin) ™" Y b (2.254k7 + 2.305k; + 1.317),  (whenk; > 2), (4)

where
b = max{|C; 1|, |Cizl, |Cisl}-

The sketch of the proof is presented in Appendix B. It is much more complex than the Lambertian
bound.
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Again, we plot ®” of a Lafortune surface to illustrate its physical meaning. A specular surface [20],
is chosen for examination. The setup of the surface element is the same as in Section 4.3.1. As shown
in Figure 8(c), the reflected radiance from steel changes vigorously and the change concentrates in a
very small region. The maximum magnitude of its second-order derivative is much larger than that of a
Lambertian. Hence Aqyni, 1S quite small and impliesthe need for a higher sampling rate.

5 Error Analysisof Off-Plane Relighting

As explained in Section 3.2, off-plane relighting introduces extra error into the reconstructed image if the
scene geometry is inexact or unknown. If we want to bound the off-plane error within ¢ when the novel
light source is positioned at any position behind the ¢r plane, then we can prove that the sufficient bound
of the depth error is:
2723
(3Bycos ¢+ By)’
where |Aa| isthe distance (along the viewing direction) between the true surface element and the
assumed depth,
z isthe dgpthﬁof the true surface element w.r.t. the ¢r plane,
cosp=V-Z,
By = G.I.max |d*®|, and
B; = G.l. max |*®'|.
The detailed informal proof is given in Appendix C. By and B; can be found using a similar method

Aal < 5
Aal < ©

asin finding B,. The analytic upper bounds of By and B; of the general BRDF, Lambertian model and
Lafortune model are listed in Appendix D.

Equation 5 indicates that the tolerable depth error is dependent on the orientation of the viewing ray
and the depth of the corresponding surface element. A by-product of the proof of Equation 5 is that the
maximum error occurs when the novel light source is positioned at a distance of around —z,,,;,/2 from
the ¢r plane, because the coefficient v/[(1 + v)?(1 + v — 7)] of Equation 8 in Appendix C reaches the
maximum 4/27 when v = 1/2 (ignoring the influence of small 7 therein) and the other term in Equation
8 is nearly independent of ~ after magnification. Though the scene depth may not always be z,;,, from
Equation 5 we know that closer objects need more accurate geometry. So close objects dominate the
maximum off-plane error when the light source leavesthe ¢r plane. Asaresult, the error is maximal when
the light source moves around the plane z = —z,;, /2. Thisexplainsthe error distribution in Figure 4 and

will be further verified by our experiments.
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5.1 Depth Layersfor Geometry Recovery

Equation 5 suggests that when recovering the local geometry we may actually search the depth along the
viewing direction in a discrete manner. Starting from an initial guess a, the relation between successive
depthsis:

° (air1cosd + 20)° = a; + :
3By cos ¢ + B o o) = 3By cos ¢ + B
where ¢ = 27¢/(4¢;), and z; is the depth of the cameraw.r.t. the ¢r plane. To simplify Equation 6, we
introduce what we call the radiometric depth:

1
. £cos ¢ 2 B £Cos ¢ ‘
“= (SBOCOS¢+Bl> (acos+20) = (BBO cosq5+B1> “

(a;cos ¢ + z)° (6)

Ai+1 —

N

where z = acos ¢ + zy iSthe depth w.r.t. the ¢r plane. Then Equation 6 becomes:

Qi1 — Gy = 05 + G = Gy L-
The solution to the above equationis:
2 1 3v3 4
Aip1 = ﬁ oS (5 arccos (_T\/_d”%) + %) . @)

We can prove that any depth a between a; and a,,, can be represented by a; +is i.e., the off-plane error
does not exceed ¢ if a is estimated as (g1 The proof can be found in Appendi‘x E. Equation 7 isvalid
only when d,, 1 < % ora; < al® = (\?/1 +2 + \?/1 —/2)/V/3 = 0.3441 - - -, otherwise d,,, does
not exist, indicating that the depth layer [a;, +oco) can simply be represented by d,, 1. In this sense, a(>)

could be viewed as the “infinity depth” in the reflected irradiance field.

Actually, it is more convenient to divide the scene according to the radiometric depth, because the
possible maximum reconstruction error (recall that Equation 5 is to control the maximum off-plane error
in off-plane relighting) between successive radiometric depth layersis constant. If the optical axis of the
cameraisaround the normal of the ¢r plane, using radiometric depth for depth sweeping isagood choice.
However, if some objects radiometric depth is near zero, e.g. for oblique light rays (cos ¢ < 1), the
increment between successive a;’s is very small, so the discrete search may not be efficient enough. A
more efficient way is to start searching from approximate geometry for each pixel. The corresponding
geometric depth can be calculated accordingly. In this case, the shape of depth layers depends on the
initial geometry.

In this way we can divide the scene into several layers of depth and any point in the scene can be
‘quantized’ to its ‘representative’ depth. Figure 9 illustrates the concept of depth layers. In Figure 9(a),
theinitial geometry is a sphere; while in Figure 9(b), theinitial guessis a plane parallel to the ¢r plane.
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Figure 9: Depth layers with different initial guesses on the geometry. The camera center is at (0, 0.5).
(a) Theinitial estimated geometry is a sphere centered at the camera. (b) The initial geometry is a plane
parallel to the gr plane.

6 Results

To verify our analysis, we carried out experiments on both synthetic and real images. Before going through
the experimental details, we need to choose a reasonable error tolerancec.

We may choose the tolerance ¢ to be the smallest difference between two successive greylevels to
achieve signal-level reconstruction. However, images captured by CCD cameras usualy contain noise
of around 9 greylevels. There also exists noise in synthetic images which are generated by stochastic
rendering such asray tracing with jittered samples[8]. Moreover, the visual difference of afew greylevels
is not apparent. Therefore, we suggest choosing a tolerance of about 16 greylevels. However, one may
choose other error tolerance according to his/her own practical requirements.

For synthetic experiments, we only consider the surface radiance and hence parameters of area cam-
era, f, AF and At, are not taken into account. Since the mapping from computed radiance and greylevel
islinear, the error tolerance ¢ can be set as

TLeI

€= % max;

where n, isthetolerable error in greylevel, and
1., iSthe radiance that correspondsto greylevel 255.



Special Issue on Multi-View Modeling and Rendering of Visua Scenes/ 1JCV 18

016 255 016 255
(d) error histogram (e) error histogram
of image (b) of image ()

Figure 10: Results of relighting aglossy Lafortune surface. The sampling bound is0.103. (a) The ground-
truth image. (b,d) When the sample spacing is sufficient, the error can be controlled within 16 greylevels.
(c,e) When the sample spacing is larger than the sampling bound, the error may exceed 16 greylevels.

A glossy surface is chosen for testing. It is represented by the Lafortune model [20]1. The ¢r plane
isplaced at a distance of 2 units from the glossy dinosaur object. In this case, the computed bound of the
geometry-independent sampling interval is 0.103 when the error tolerance is 16 greylevels. Figures 10(b)
and (c) show the relighting results from images sampled with spacing 0.0938 and 0.187 on the ¢r plane
respectively. Information on sample spacing is aso shown at the bottom of each image. The true image
is shown on the left (Figure 10(a)). Figures 10(d) and (e) show the error histograms (histograms of
the absolute difference images). The histograms clearly show that the error can be controlled within
designated 16 greylevels when the sampling rate is satisfied, and the error exceeds this tolerance when the
sampling rate is inadequate.

Our synthetic experiments can also verify the bound in Equation 5. Unfortunately, as it is only a
sufficient bound, it only guarantees that the off-plane error is below ¢ when the depth error does not
exceed the bound. It is possible that the off-plane error is still below ¢ if the depth error is above the
bound. However, we found in our experiments that three times of the bound can serve as an exact bound.
So we may modify the bound to be three times of its original value. Figures 11(b) and (c) show the
relighting results when the novel light source is placed at — %zmin = —0.9015 behind the ¢r plane, with
depth errors for every pixel being exactly the modified bound and twice the modified bound, respectively.

10nly the data at wavelength 450nm is used, where C';; = Ci, = 1.11999, C3 =1.01942, k; =15.4571; Cy; =
Cyy =1.08378, C23 =0.626672, ko =65.2179; C'3; = C32 =1.01529, C'33 =1.00108, k3 =195.773.
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(@) true image (b) depth error equalsthe (c) depth error istwice the
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(d) error histogram (e) error histogram
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Figure 11: Results of off-plane relighting of a glossy Lafortune surface. (a) The true image. (b,d) When
the depth information is sufficient, the error can be controlled with 16 greylevels. (c,e) When the depth
error islarger than the modified bound, the error may exceed 16 greylevels.

The error tolerance is again 16 greylevels. The trueimage is shownin Figure 11(a). The error histograms
again show that the error can be controlled if the depth error is below the modified bound.

Furthermore, the maximum error between Figure 11(c) and Figure 11(a) is 22 greylevels when the
light sourceis at —%zmin = —0.9015. When the depth information does not change but the light source
isplaced at 0.17, 0.33, 0.56, 0.73, 1.09 (it moves perpendicular to the ¢ plane), the maximum errors are:
7, 16, 19, 20, and 18 greylevels, respectively. Hence, that the maximum off-plane error occurs at around
— 5 Zmin IS ONCE More verified.

To carry out the experiment on real surfaces, we built a computer-controllable system that precisely
moves the point light source over a vertical X-Y table. Figure 12(a) shows the computer-controlled ¢r
plane. A halogen bulb (Figure 12(c)) is used to ssimulate a point light source. The experiment setup is
shown in Figure 12(b). The whole capture process took place in a dark room with the halogen bulb as
the sole light source, and measures were taken to minimize the interreflection between the object and the
environment.

Both the radiometric and geometric calibrations are necessary in real experiments. For radiometric
calibration, we applied the algorithm in [10] to recover both the response function of the camera and the
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() @

Figure 12: Elements of real experiments. (@) Computer-controlled ¢r plane. (b) Experiment setup. (C)
Halogen bulb. (d) A real surface.

high dynamic range radiance maps. The error tolerance e can be set as:
€= Ee : Emaxa

where E, € (0, 1) is the tolerable error in exposure that corresponds to tolerable error n, in
greylevel, and isnormalized by F.,., and
En.x 1Sthe exposure that corresponds to greylevel 255.

One may find E,,., by shooting the camera at the light source and tuning down both the aperture and
the exposure time until the light source produces a greylevel near 255. In this way we only need to record
the aperture area and the exposure time, without measuring the focal length because it will be cancelled
during computation.

For geometric calibration, we applied the toolbox in [5] to compute the intrinsic parameters and a
standard camera calibration algorithm [44] to compute the homography between the image plane of the
camera and the light source plane. Since the camera could not see both the light source and the object due
to the limited FOV, during calibration phase we fixed a thin, light and long straight bar beside the light
source so that the camera can see the far-reaching end of the bar. The bar is perpendicular to the ¢r plane.
By taking images of the bar when the light source moves on the ¢r plane, the transform matrix can be
computed because both the intrinsic parameters of the camera and the positions of the end of the bar are
known.

Figure 12(d) shows the rea surface we have captured for verification. It is made of steel and is
anisotropic. Asits geometry issimple, the light source and the viewing directions are known with respect
to the normal after the geometric calibration. The Lafortune model of the surface BRDF isfit to the high
dynamic range radiance maps by Levenberg-Marquardt method [33]. The surface is by 52cm away from
the ¢gr plane and the geometric independent bound is found to be 1.08cm when the error tolerance is 16

greylevels.
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(a) trueimage (b) 1cm (c) 2cm (d) 4cm
0 IIB 255 0 1|6 255 0 1|6 255
(e) error histogram (f) error histogram (g) error histogram
of image (b) of image () of image (d)

Figure 13: Results of relighting steel surfaces. The sampling bound is 1.08 cm. (@) The ground-truth
image. (b,e) The sample spacing is just below the sampling bound. (c,d,f,g) The sample spacing is
insufficient. Hence the highlight and glare are widened or separated.

Figure 13 shows the result of relighting from images with different sampling intervals. Figure 13(a) is
the ground truth. From left to right, the sampling rate is reduced, each time by a factor of 2. As shown
in Figures 13(c) and (d), the highlight band is slightly enlarged and double images of the highlight even
appear in (d). Though Figure 13(b) is synthesized from sufficient samples, the errors of several pixels
are till larger than 16 greylevels. This is because of the noise in the captured images and the response

function of the camera.

7 Extension to Directional Source

Our analysis can be easily extended to the case when a directional light source is used during scene cap-
ture. Instead of determining the maximum allowable sample spacing Ag, we can cal culate the maximum
alowable sampling angle A6 =~ Aq/zmi, (in either elevation or azimuth).

Rewrite Equation 3 as

Agq 1 \/ 8 \/ 8¢ B 8¢
Zmin ~ Zmin V| C1B2 BZZgﬁn L f2AFAt N BNZ(Il/Zgﬁn)CZ,

where B, = Byz!

min*
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B, is actualy the max term in Equation 2. I, /72 is the emitted radiance of the directional light

min

source. We can denote this term by I,. Making zmim — oo, we obtain the angular sample spacing for the
Af < ,/8—5,
CQBQ

Similarly, we can replace I;/ 2% in (Equation 5) by I, to determine the error bound when the novel light

directional light source as:

where ¢, = I, f 2AFAt.

source is aso directional. For relighting with a directional light source, 2 — oo, and hence |Aa| — oc.
Thismeansthat the relighting isindependent of geometry if only parallel light sources are involved, which
agrees with the common sense.

8 Conclusonsand Future Work

In this paper, we have defined the reflected irradiance field for image-based relighting and studied its sam-
pling and reconstruction problems. The reflected irradiance field is based on a tri-planar representation
for the extended plenoptic function that allows the change of both the light source and the viewpoint. For
the sampling problem of the reflected irradiance field, we prove that there exists a geometry-independent
bound of the sampling interval, which isanalytically related to the BRDF of the scene. For the reconstruc-
tion problem, we propose a bound of acceptable depth error and the division of the scene geometry into
several depth layersis aso presented. Finally, our analysis can aso be straightforwardly extended to the
case of directional light source. Experiments are conducted to verify our theoretical analysis.

Currently we choose the error tolerance according to a physically-based metric, so we refer to it as
the radiometric tolerance. In some cases, humans may not notice artifacts even though the radiometric
error is large in the reconstructed image. What is interesting and useful for future work is to determine
the photometric tolerance which takes the response function of human vision into account. Recent work
in psychophysical computer graphics [31, 11] provides a psychophysical framework for measuring the
sensitivity of human vision to artifacts due to undersampling. Another way to incorporate human percep-
tion into our sampling analysisis to analyze the bounds of the psychophysical reflection model that was
recently proposed [32].

In the current work, we compress the reflected irradiance field in the following manner. Firstly, the
captured radiance values are rebinned so that all values associated to a pixel are grouped to form an image.
Then, each of these images is compressed using 2D DCT. Block-coding technique is also used in [28].
Other coding techniques, such as vector quantization, and wavelet compression could be also used to
reduce the data volume. However, random-access and sel ective decoding must be considered in selecting
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acoding schemein order to improve the performance of our relighting system.
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Appendix A: Proof of Equation 2

By expanding ®”, we get,

1
" = d_[P'zllzl(ml 0l)? s+ 2p5,4, (M1 — Gly) (00 = Loly) o + plyg, (01 — Loly)* o+
pé (2m1n1 - 6152 - 271151[1 — 8m1€2l1 + 96152[2) + pé (27’Ll - EZ - 10n1€2l1 + 9€2l2)
( 362 — 6TL1[1 + 155212)]

where (my, ma, m3), (n1,ns,n3) ad (11, I, I;) are the coordinates of M, N and L respectively,
and
P and p" are 1st-order and 2nd-order partial derivatives respectively.

Direct full search can conveniently produce the coefficients in Equation 2, though it might be time-
consuming. However, mimicking the proof in Section 4.3.1, the coefficients of pj , and p can be proven

to be exactly z_i and 3z_: , respectively.

min min?

Appendix B: Proof of Lafortune Bound

Let
¢; = Cilivy + Ciolovy + Cislsvs, and o; = Cyymyvy + Ciongve + Cizpiis,
where (mq, my, m3) and (p1, p2, p3) arethe globa coordinates of M and P, respectively, and
{N M P} isthe local frame at the surface point.
Then
Olg1'td ) ki + 3)0 [0, + 2010y — (ki + 5)0ol2)d* + 2knhpki ki + 3)0sly]d
O —(ki +3)¢5 [l2 + 201y — (ki +5)60i]d " + 2k [n1 — (ki + 3)Laly]

+hi(ki — V)22 lod ™"
= — (ki + 3)81 G + 2kihi i~ Go + ki(ki — 10261 G
It can be verified that when &; > 2,
|G1| =d Yni[3 = (ki + 5)I2)l + no[l — (k; + 5)13)lo + ns[1 — (k; + 5)12]15]
< (q) = d*\/(k; + 1) (ki + 5)1F — 2(k; + 1)1 + 1

where the Cauchy’s inequality is applied. Taking the partial derivative of h(q) w.r.t ¢ shows that h(q)
reaches maximum at ¢’s such that:

. . ) 3 2 .
Lo o o (ki + 1) (ki + 10) %= \/ (ks + 1) (k3 + 9K? + 24k; — 80) = 035,
6(k; + 1)(k; + 5)

For i, = 0, h(q) < (2mia) . For the other two /,’s,

1 1
(ki + 1) (ki +5)IF —2(k; + )2+ 1= 5[(1% +1)(ki+4)3 - k] < 5[0.385(1% + 1) (ki +4) — k]
< [0.359(k; + 1.223))?
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object

v

Figure 14: Incorrect depth information will cause extra error when the novel light source is not on the gr
plane.

Therefore
|G| < 0.359(k; + 1.223) (2mmin) "
Similarly,
ki + 2
V5
Finally, asboth |¢;| and || cannot exceed b; = max{|C; ], |Ciz2|, |Cis|}

|G2| < (Zmin)_4 and |G3| S (Zmin)_4-

Lo tyd?)
0q?

bFi(2.254k2 4 2.305k; + 1.317)

(%min)?

b

and thus (4) results.

Appendix C: Proof of Equation 5

Suppose the light source L is off-plane. For ray C'A, the exact depth isa = |C'A| and the estimated
depthisa’ = |C'A’|. AL and A, L intersect the ¢r plane at ¢ and ¢;, respectively. Then the depth error is
Aa = a — o and the off-plane error is:

¢ = () B0 - () E@)
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On the other hand,
E(q) — E(q1) = (¢ —q1)E'(q), (g isbetweengandq)
therefore

_ v %
S (ETE (e

(2o ) Pl - AarE), ®

whereT' = /=2 + 1 — 25(L - C). It can be proven that
I'(L-Z) <1, 9)

but we have to omit the proof here.
Since (8) istoo comple, it is necessary to simplify it in order to achieve valuable results. When 7 is
small,

v O S

Q+2(1+y-7)  (1+7)°

4 T
27’

and |Aq| ~ |Aq| =~ |Aq|. Therefore

€l < 5 Bl7lee + 1Al - 5) - ¢
~ 5 (37| 2 + Al - 5)

(355130 + 11131)|ZX(”

4eq
27|Aqf?
— LlL22(3(V - Z)By + T(L - Z)By)|Ad]

< da (3(V - Z)By + By)|Aal,

2723

where B, and B, arethe normal-independent maximaof ® and ', respectively, or more precisely,
By = G.l.max d’*®, B, = G.l.max d*|®|.
In the last inequality, (9) is applied.
Then, in order that |£| < ¢, it issufficient that

401

5 3(V - Z)Bo + By)|Aa| < e,

or
2723¢

(3Bycos ¢+ By)’

Aal <
| a| - 401

where cos ¢ = V. Z.
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Appendix D: Analytic Boundsfor B, and B;

For general BRDFs,
By = max{p}, and B; < max{|p;, |+ 0.5|p,,| + 2p}.

For the Lambertian moddl,
By = po, and By = 2py.

For the Lafortune model,

By < Y_bF, and By < b (1.5k; + 1).
Appendix E: &H% Can Represent Every a € [a;,a,41)
We want to prove that for every a € [a;, G;11),
< a4+ ad.

~ ~3 ~
a—a” < a;,

M

Indeed,

D
(VAN
Q>
(VAN
j=)

Q—ad <y =a;+a <a+a’

M

2. otherwise, if a1 < oo, then it is necessary that a;,1 < % hence from (7), a,,, < 1/V/3.
Therefore



