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Abstract

Image-based relighting (IBL) is a technique to change the illumination of an image-based ob-
ject/scene. In this paper, we define a representation called the reflected irradiance field which records
the light reflected from a scene as viewed at a fixed viewpoint as a result of moving a point light source
on a plane. It synthesizes a novel image under a different illumination by interpolating and superim-
posing appropriate recorded samples. Furthermore, we study the minimum sampling problem of the
reflected irradiance field, i.e., how many light source positions are needed. We find that there exists
a geometry-independent bound for the sampling interval whenever the second-order derivatives of the
surface BRDF and the minimum depth of the scene are bounded. This bound ensures that when the
novel light source is on the plane, the error in the reconstructed image is controlled by a given tolerance,
regardless of the geometry. We also analyze the bound of depth error so that the extra reconstruction
error can also be governed when the novel light source is off-plane. Experiments on both synthetic and
real surfaces are conducted to verify our analysis.

Keywords: sampling, BRDF, light field, Lumigraph, plenoptic functions, image-based rendering, re-

lighting

1 Introduction

To achieve realism, traditional geometry-based computer graphics makes use of sophisticated physics-

based light transport models, precise geometry and complex rendering algorithms. However, unless care-

fully tuned, most computer-generated images still can be distinguished from real photographs. As an

alternative, IBMR (Image-based Modeling and Rendering) synthesizes images from pre-recorded images,

which can be real photographs. It employs a collection of reference images as samples of the plenop-

tic function [2] so that the rendering process simply becomes ray query, interpolation and composition.

Photorealistic images can be efficiently synthesized without a complex and long rendering process.
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Much of the previous work in IBMR assumes that the lighting condition is fixed and the surface is

Lambertian. Obviously, these assumptions cannot fully satisfy computer graphics needs, since illumina-

tion modification is a key operation. Image-based relighting (IBL) is a technique to change the illumina-

tion of an image-based object/scene. The goal is to modify the illumination in an interactive fashion while

preserving correct visual appearance. This presents an important and challenging problem in IBMR.

In this paper, we propose a representation of the plenoptic function called the reflected irradiance field

for IBL. The reflected irradiance field stores the reflection of surface irradiance when a point light source

moves on a plane. With the reflected irradiance field, the relit object/scene can be synthesized simply by

interpolating and superimposing appropriate sample reflections. If the geometry is not available, the image

can be relit by arbitrary combination of point light sources on the plane. If the geometry is available, the

luminaire can be of any kind, including directional light sources.

Like IBMR, IBL is a problem of sampling and reconstructing the plenoptic function. Though for

IBMR, the sampling problem of the light field [22, 15] has been studied by Lin and Shum [23] and Chai

et al. [6], no previous work has addressed the sampling problem of IBL. Clearly, the sampling criteria

of relighting and that of the light field are different. Light field rendering is a view interpolation tech-

nique. Therefore, its sampling is more related to geometry, though the complex lighting effect are also

recorded by the light field. In contrast, sampling in relighting is more concerned with surface reflectance.

In this paper, we present a theoretical analysis on the sampling and reconstruction problems of the re-

flected irradiance field. We find that there exists a geometry-independent sampling bound that controls the

reconstruction error when the light source is on the sampling plane. Finally, we study the reconstruction

error when the light source leaves the plane and propose the depth layers for geometry recovery.

The rest of our paper is organized as follows. We first review some related previous work in Section 2.

The definition of reflected irradiance field is presented in Section 3. In Section 4, we present a theoretical

analysis on the problem “how many samples are sufficient for on-plane relighting?” In Section 5, we

proceed to study the problem “how much depth information is sufficient for off-plane relighting?” Then,

experimental results are presented in Section 6. Section 7 extends our analysis to the case of directional

light sources. Finally, we draw conclusions and suggest future directions in Section 8.

2 Previous Work

Recently, much work has been done in the area of IBMR. It can be regarded as solving the problem of

sampling and reconstructing the plenoptic function [2], as pointed out by McMillan and Bishop [27].

To reduce the data volume, many researchers have worked on bringing down the dimensionality of the

plenoptic function, ranging from five to two dimensions [27, 22, 15, 36, 7].
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Although there are advantages to reducing the dimensionality of the plenoptic function, there are also

reasons to increase it [39]. Since the original formulation of the plenoptic function assumes that lighting is

constant, the illumination of generated images is also fixed. This limitation hampers the further application

of IBMR. However, this limitation can be overcomed by increasing the dimensionality of the plenoptic

function, using extra parameters to represent the distribution of light sources.

There are several approaches for changing the lighting condition. Haeberli [16] relit scenes by super-

imposing images. However, the direction, the type and the number of the light sources are limited to the

original lighting setup during the scene capture. Using higher dimensional plenoptic functions, Wong et

al. [40] could both change the lighting (relight) and move the viewpoint. Similarly, Debevec et al. [9] also

defined a variant of the extended plenoptic function called the reflectance field to represent the radiance

reflected from human face where dense samples were captured and interpolation was ignored. Yu and

Malik [42], Yu et al. [41] and Sato et al. [34] endeavored to recover the surface BRDF and approximate

geometry. In [12, 25, 13], the shadows are more carefully treated, but only Lambertian BRDF is assumed

in their global illumination computation. In [26], Magda et al. tried to recover the object geometry, in-

stead of surface BRDF, by taking images of an object when a point light source moves on two concentric

spheres enclosing the object. Unlike the above approaches, singular value decomposition [14] was applied

to extract a set of basis images [43], where novel images were obtained by linearly combining the basis

images.

Unfortunately, most of the previous work ignored the error analysis of sampling and reconstruction.

Though the relit images were visually appealing, the correctness was never ensured. As an exception,

superposition by steerable functions [29] is exact for Lambertian surfaces, but it is limited to empirical

cosine illumination models. The study on the related sampling issue is rare. Amanatides [3] proposed an

anti-aliasing algorithm that based on Phong model for specular highlight by clamping the parameters in

the Phong model. Assuming that the object is convex and Lambertian, Belhumeur and Kriegman [4] have

shown that three images are sufficient to relight the scene under various directional light sources.

This paper is an extension of our previous work [24]. We propose the reflected irradiance field for IBL.

Its concept is close to that of apparent BRDF [40] and the reflectance field [9]. The apparent BRDF and

the reflectance field use a directional light source, while our reflected irradiance field adopts a point light

source that moves on a plane. Our rationale is that sampling with point light source can be easily realized in

real world. Nevertheless, our analysis can be easily applied to the apparent BRDF and the reflectance field

when the light source plane is at infinity. When we study the sampling issues and reconstruction errors in

our framework, we try to keep our analysis geometry-independent and to consider general BRDF.



Special Issue on Multi-View Modeling and Rendering of Visual Scenes / IJCV 4

3 The Reflected Irradiance Field

3.1 Tri-planar Parameterization and Its Simplifications

Adelson and Bergen have proposed a multi-dimensional plenoptic function [2] for evaluating low-level

human vision models. The function describes environment appearance that our eyes observe. Besides the

parameters for viewing direction, the center of projection and the wavelength, a time parameter is used to

model all other unmentioned factors, such as the change of illumination and the change of environment.

When it is constant, the scene is static and the illumination is fixed. Techniques [27, 15, 22] based on this

model naturally inherit this rigidity. However, the ability to modify the illumination configuration is very

important in computer graphics. To express the change of illumination, we may extract an illumination

component from the aggregate time parameter and explicitly specify it [39].

In general, the illumination component is a high dimensional function. It is necessary to assume a

specific type of light source in order to reduce the dimension. Usually, directional light sources are used,

such as the apparent BRDF of pixels in [40] and the reflectance field in [9]. They are simple and convenient

for synthetic images. However, they pose practical difficulties in capturing large object/scene because they

are usually approximated by positioning strong spotlights at a distance that greatly exceeds the size of the

object/scene. A point source, on the other hand, can be reasonably approximated by a tiny yet strong

light bulb, such as a halogen bulb, which need not be placed far away. Because of this advantage, we

utilize point light sources instead of directional sources like previous approaches [40, 9]. Nonetheless,

our analysis on sampling can be extended to the directional-source case. The extension is presented in

Section 7.

The major disadvantage of the point-source formulation is that three parameters (rather than just two

for the directional-source) are needed. To reduce the dimensionality, we constrain the point light source

to lie on a 2D light-source plane. Hence only two parameters (q; r) are needed. This approach is inspired

by the light field [22] and Lumigraph [15].

Then our extended plenoptic function can be represented by three planes (Figure 1). The viewpoint

is constrained to lie on the camera plane (uv plane) while the point light source is constrained to be on

the light-source plane (qr plane). Together with the object plane (st plane), this representation requires

six parameters. Each captured value in the six-dimensional table represents the light reflected through the

window (s; t) and received at a certain (u; v) when the scene is illuminated by a point source positioned

at (q; r).

It is apparent that the tri-planar representation reduces to a four-dimensional light field and Lumigraph

if the lighting condition is fixed (Figure 1(b)). On the other hand, if the viewpoint (u; v) is fixed, the
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(b)

(a) (c)

Figure 1: The tri-planar configuration and the dual light slab parameterization. (a) Each captured value
represents the radiance reflected through (s; t) and received at a certain (u; v)when the scene is illuminated
by a point source positioned at (q; r). (b) The light field is parameterized by the viewing vector. (c) The
reflected irradiance field can be conceived as being parameterized by the light vector.

tri-planar representation reduces to another four-dimensional function (Figure 1(c)), which we call the

reflected irradiance field. It records the reflection of irradiance (w.r.t. the surface element) due to different

light source positions.

3.2 Relighting

The rectilinear structure of reflected irradiance field allows us to simplify the relighting process. When the

light source is on the qr plane, to determine the radiance received at a given (u0; v0) reflected from (s0; t0)

with light at (q 0; r0), we can linearly interpolate the values of the nearest neighbors in the 4D reflected

irradiance field (Figure 2) in a pixel-by-pixel manner. This interpolation process is similar to that in light

field and Lumigraph rendering. Generally speaking, the interpolation is quadri-linear because it is bilinear

in both st and qr. If the resolution of the output image is the same as that of the input images, then the

interpolation reduces to bilinear interpolation in qr. Real-time relighting [1] can be done by utilizing the

bilinear interpolation module in texture-mapping hardware in the similar fashion as in [15]. Figure 2(b)

shows the schematic diagram illustrating the linear interpolation in (q; r; s; t). Moreover, the image can be

relit by various combinations of point light sources on the qr plane different from the one used during the

scene capture thanks to the linearity of light transport. The utilization of this superposition property can
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(a) (b)

Figure 2: Relighting is done by bilinearly interpolating neighboring radiances in a 4D reflected irradiance
field.

be also found in [35, 29, 40]. However, when the light source is not on the qr plane, the squared-distance

attenuation of light energy must be considered in the synthesis process, and hence the need of geometry is

apparent.

Since the relit image is synthesized from the sampled ones, it is very likely that there is reconstruction

error. If the novel light source is on the qr plane, the interpolation error is ensured to be smaller than a

given tolerance. This will be studied in detail in Section 4. However, if the novel light source is off-plane,

the error will increase due to the lack of scene geometry. Similar phenomenon also occurs in the light

field/Lumigraph [22, 15]. Figure 3 illustrates the sources of error. As the actual depth of the scene is

often unavailable during relighting, the object is often assumed on a constant-depth plane [19, 6, 23]. In

the simplest case, the constant-depth plane is assumed to be the st plane. Hence the light gray pair of

(q; r; s; t) is retrieved for interpolation, even though the correct one should be the dark gray pair. In the

case of view interpolation, the error is solely due to this incorrect ray query. However, in the case of

relighting, the interpolation weight is also incorrect because the intersection point on the qr plane will be

mistakenly calculated as the light gray dot. The correct intersection point should be the dark gray dot.

The incorrect intersection point not only induces incorrect interpolation weights, but may also result in

wrong samples being chosen for interpolation. Moreover, due to the distance-square falloff of illumination

intensity, the attenuation will also be incorrect because the true distance dtrue from the novel light source

is unavailable.

Off-plane relighting using geometry is only an approximation as it does not consider global illumina-

tion. Nevertheless, we can still study the behavior of the error when the global illumination is ignored.

We call this error the off-plane error. The details will be presented in Section 5. Here we only illustrate

the error due to off-plane relighting through a simple example in Figure 4 (a), where a planar object is
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Figure 3: The sources of error when the novel light source is off-plane: incorrect ray query, interpolation
weight, sample reflections and attenuation.
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Figure 4: (a) The error map when the novel light source is off-plane. Darker color indicates the error is
high while white indicates the error is low. (b) The plots of the errors at the right end (upper curve) and
the center (lower curve) of the error map as a function of distance from the qr plane. Note that both curves
reach their maximums around � 1

2
z� = �0:5.

positioned at z� w.r.t. to the qr plane and the camera is placed close to the qr plane and facing the scene.

The off-plane error appears only when the assumed constant-depth plane is not coincident with the

true object and the novel light source moves out of the qr plane. In Figure 4(a), the maximum off-plane

error at different off-plane light source positions is indicated by grayness. The darker the grayness is, the

larger the error is. When the novel light source is very close to the qr plane, the error is very small. As the

light source moves farther away, the error increases on the left and right hand sides, but the error behind

the camera only increases slightly. The error reaches its maximum around the line of�z�=2 (Figure 4(b)).

Then it decreases when the novel light source moves farther away. The decrease is due to the squared-

distance falloff.
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Table 1: Nomenclature
E exposure of a pixel
Ii irradiance through a pixel
Ir radiance of a surface point
Il; ~Il intensity of point and directional light sources
�t;�F; f exposure time, area of aperture and focal length of the camera
d distance between the light source and the surface point
z perpendicular distance to the light source plane
� incident angle w.r.t the optical axis of the camera
� BRDF
~N; ~L; ~V normalized surface normal, inverse light vector, and viewing vector
f ~N; ~M; ~Pg form the local frame at a surface point
~Z unit vector perpendicular to the light source plane
(u; v); (s; t); (q; r) coordinates on the camera, object, and light source planes
(`1; `2; `3); (�1; �2; �3) local coordinates of ~L and ~V
(n1; n2; n3); (l1; l2; l3) global coordinates of ~N and ~L
� = �`2d

�2, depends on geometry and light source position
c1; c2 constants for point and directional light sources
B0; B1; B2 geometry-independent upper bounds of jd2�j, jd3 @�

@q
j, and j@

2�
@q2
j, respectively

4 Sampling Analysis for Relighting

Obviously, the quality of the interpolated image depends on the sampling rate. However, it is difficult to

answer the question how many samples are enough to avoid aliasing? There are three sampling rates to

consider, one for each plane. The sampling rate on st depends on the required resolution of the desired

image. The tricky part is the sampling of uv and qr. Lin and Shum [23] and Chai et al. [6] have addressed

the sampling issue on the uv plane for view interpolation. In this paper, we first address the question of

how many samples are enough to avoid noticeable artifacts in a relit image? Our goal is to determine

the maximum allowable sampling interval on the qr plane such that the intensity error in the relit image

is smaller than a tolerance. Since incorrect geometry information can also cause aliasing when the light

source is not on the qr plane, in the next section we move on to study the problem of how much depth

information is sufficient for correct relighting?

4.1 Background

We assume a pin-hole camera, with a finite aperture to collect enough light. As the treatment of global il-

lumination, such as cast shadow, interreflection and subsurface scattering [17], requires substantial knowl-

edge of geometry and the rendering algorithms are generally complex [35, 13, 25, 12, 42, 41, 34], our

analysis focuses on local reflection. The major assumption in our analysis is that the BRDF (�) in the
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Figure 5: A graphical illustration of parameters in the analysis.

scene must be second-order differentiable and the second-order derivatives are bounded. It is a reasonable

assumption because a wide range of reflectance models (both physical and empirical) satisfy this assump-

tion, including the Lambertian model, the Lafortune model [21], Ward’s anisotropic model [38] and Oren

and Nayar’s non-Lambertian model [30]. Moreover, an ordinary camera acts as a low-pass filter since its

resolution is finite. Hence our assumption may be relaxed to those BRDF models that are only first-order

differentiable. To simplify the following analysis, we shall not take the camera resolution into account.

As the camera records exposure instead of radiance directly, we move on slightly to exposure. Refer-

ring to Figure 5, the exposure at the pixel of A is:

E = Ii�t;

where Ii is the irradiance received through the pixel window associated with A and �t is the exposure

time. As shown in [18], Ii is related to the intensity of the light source as follow:

Ii = cos4 ��Ff�2Ir; and Ir = �(`1; `2; �1; �2)`2d
�2Il;

where � is the incident angle at C w.r.t. the optical axis of the camera,
�F is the area of aperture,
f is the camera focal length,
Ir is the reflected radiance at A towards C,
� is the surface BRDF,
d is the distance between the light source and the surface element,
Il is the intensity of the light source, and
(`1; `2) and (�1; �2) are the local directional coordinates of ~L and ~V w.r.t. the local frame
f ~N , ~M ,~Pg at A respectively (~P is not drawn in Figure 5 since it is perpendicular to the
paper).

Hence

E = c1�(`1; `2; �1; �2);
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where
c1 = Il�F�tf

�2; �(`1; `2; �1; �2) = �(`1; `2; �1; �2)`2d
�2:

cos4 � disappears because most cameras are designed to eliminate the diminishing artifact introduced by

it and the field of view (FOV) of cameras are often small.

As c1 is constant throughout our analysis, the change of exposure depends on � only, which is a

function of the light source position (q; r). Therefore we analyze how � changes as the point light source

moves on the qr plane.

4.2 Problem Formulation

When a novel point light source is positioned on the qr plane but not at any sample point, the exposure

can be interpolated by those recorded values from neighboring qr grid points. Throughout the analysis,

bilinear interpolation is assumed to be used for reconstruction since it is simple and can yield satisfactory

image quality.

To simplify the discussion, we now look into the 1D interpolation along dimension q (Figure 6). Then

the bilinear interpolation becomes

~E(q) =
~I

Il
[�E(q2) + (1� �)E(q1)];

where q is the position of the novel light source,
~I is the emitted radiance from the novel light source, and
� = jq1 � qj=jq1 � q2j.

Given an error tolerance ", we want to find the maximum allowable spacing between samples along

the q-axis such that the difference between every reconstructed exposure and the true exposure is smaller

than ". Obviously E is not band limited as a function of q. Therefore, if the exposure is treated in a con-

tinuous manner, it is usually impossible to exactly reconstruct the reflected irradiance field from discrete

samples. However, exact reconstruction is unnecessary due to quantization, or the mapping from exposure

to discrete greylevels. If the greylevel corresponding to the interpolated exposure is identical to that of the

exact exposure (signal-level reconstruction) or the difference is not visually noticeable (perception-level

reconstruction), we may still say that the reflected irradiance field is perfectly reconstructed. Hence the

sampling problem can be formulated mathematically as follows:

Find the maximum allowable spacing �q between the sampling grids, such that

j�E(q1) + (1� �)E(q2)� E(q)j � "; 8A; and 8(q1; q2; q) satisfying

0 � q2 � q1 � �q and q1 � q � q2:
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Figure 6: To reconstruct the exposure when a novel light source is positioned at q, linear interpolation (1D
case) is done among neighbors.

4.3 Geometry-Independent Sample Spacing

We find that there exists a geometry-independent bound for the qr sampling interval whenever the object

BRDF is second-order differentiable and the second derivatives are bounded. As long as the sampling

interval does not exceed the bound and the novel light source lies on the qr plane, the reflected irradiance

field can be correctly reconstructed within prescribed error without knowing any geometric information,

such as depth and normal. This is important because surface reflectance depends heavily on the normal

and acquiring accurate normal is even harder than acquiring depth.

For a pixel of interest, as we move the light source along the q-axis, the radiance and hence the

exposure changes. We can plot the captured exposure as a function of q. Figure 7 shows the plots for two

specific pixels in the left image. Given a tolerance ", one can find an optimal sampling interval �qi for

each specific curve such that the difference between the linearly-interpolated value and the true value is

smaller than ". For example, in Figure 7, the optimal sample spacing for pixel ‘a’ is �q1, while it is �q2

for pixel ‘b’. The difference in the shape of the curve may due to the surface normal orientation of the

surface element visible through the pixel, the distance from the surface element to the light source, and

the reflectance difference.

If we find the minimum sample spacing among all possible �q (i.e. all possible combinations of

normal orientation and depth), we can ensure that the reconstruction is correct (within a tolerance) without

knowing the geometric details of the scene. All we need to know is the BRDF and the minimum distance

zmin (see Figure 6) between the object and the qr plane. In the following, we show that for BRDFs with

bounded second-order derivatives, the bound is positive.

From interpolation theory [37], there exists ~q 2 [q1; q2], such that
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Figure 7: An exposure curve can be plotted for each pixel in the image as the light source moves along q.
The blue curve is for the pixel marked by the blue box, while the purple one is for the pixel in the purple
box.

�E(q1) + (1� �)E(q2)� E(q) =
1

2
(q � q1)(q2 � q)

@2E(~q)

@q2
:

Therefore,

j�E(q1) + (1� �)E(q2)� E(q)j �
1

2

"
(q � q1) + (q2 � q)

2

#2
c1B2 =

1

8
(�q)2c1B2; (1)

where

B2 = G:I:max

�����@
2�

@q2

����� ;
or the geometry-independent upper bound of j @

2�(q)

@q2
j. Put in other words, B2 is the maximum value of

j@
2�(q)

@q2
j for all possible positions of the light source and all possible positions and orientations of A.

Let us denote @2�
@q2

as �00 for simplicity. For a general BRDF, we can prove (see Appendix A), by a

hybrid method of numerical computation and analytical deduction, that if the second-order derivatives of

the BRDF are bounded, then:

�00 <
1

z4min

max
`1;`2;�1;�2

fj�00`1`1 j+ 0:77j�00`1`2 j+ 0:385j�00`2`2 j+ 2:046j�0`1j+ 2:098j�0`2j+ 3�g; (2)

where �0 and �00 are 1st-order and 2nd-order partial derivatives of �, respectively, and
zmin is the minimum depth of the scene w.r.t. the qr plane.

From the above equation, we know that the geometry-independent upper bound of the sampling inter-

val exists. Unfortunately, usually the analytic bound is much larger than the exact bound, except for the

Lambertian bound shown below. Therefore, it is better to find the bound by direct numerical computation.
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In our experiments, we simply performed a full search to find the maximum value of � 00 under all possible

positions and orientations of surface point. One trick is that searching along depth is unnecessary. The

exact bound must be attained when the depth of the surface element is zmin.

Substituting �00 into Equation 1, the sufficient bound for �q (sample spacing) is:

�q �

s
8"

c1B2

: (3)

It can be seen that the sampling bound is tightly related to the maximum magnitude of the second-order

derivatives of the BRDF. With the geometry-independent bound, we can use identical sampling intervals

on the qr plane to sample the reflected irradiance field, regardless of the actual geometry. Next, we show

the bounds of two popular reflectance models in computer graphics.

4.3.1 Lambertian Bound

For Lambertian surfaces, � � �0 � 1=�. After some manipulation, we have

�00 =
3�0
d4

(�`2 � 2n1l1 + 5`2l
2
1);

where (n1; n2; n3) and (l1; l2; l3) are the directions of ~N and ~L, respectively.

Since

�`2 � 2n1l1 + 5`2l
2
1 = n1(�3 + 5l21)l1 + n2(�1 + 5l21)l2 + n3(�1 + 5l21)l3;

j~Lj = 1, and j ~N j = 1, using Cauchy’s inequality, we have

j � `2 � 2n1l1 + 5`2l
2
1j �

q
[(�3+5l21)l1]2+[(�1+5l21)l2]2+[(�1+5l21)l3]2 =

q
5l41 � 2l21 + 1

Therefore

j�00j � h(q) =
3�0
d4

q
5l41 � 2l21 + 1:

Taking the partial derivative of h(q) shows that

max
q
fh(q)g = h(q)jl1=0;

hence

G:I:max j�00j = 3�0(zmin)
�4:

The equality holds because the right-hand side is attainable, as the example shown below.

To understand the physical meaning of �00, we plot it against q for a specific Lambertian (�0 = 1=pi)

surface element. The element is one unit distant from the qr plane and its normal is facing the qr plane
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(a) (b) (c)

Figure 8: Illustration of �00 for different surface properties. (a) A specific surface element considered. (b)
�00 of Lambertian surfaces. (c) �00 of Lafortune surfaces.

(Figure 8(a)). Intuitively, �00 can be regarded as the “acceleration” of radiance. As shown in Figure 8(b),

the radiance accelerates slightly as the light source moves closer to the surface element. It then decelerates

quickly as the light source moves to the center of the qr plane. In this example, G:I:max j� 00j is attained

when q = 0.

4.3.2 Lafortune Bound

Another model of interest is the Lafortune model [21] because of its capability of modeling a wide range

of reflection phenomena, including diffuse, specular, off-specular, non-Lambertian, anisotropic and retro-

reflection.

In the Lafortune model,

�(`1; `2; �1; �2) =
X
i

(Ci;1`1�1 + Ci;2`2�2 + Ci;3`3�3)
ki;

where (`1; `2; `3) and (�1; �2; �3) are the coordinates of the normalized vectors ~L and ~V in the
local frame f ~M; ~N; ~Pg respectively,
i is the index of cosine lobe, and
Ci;1, Ci;2 and Ci;3 are the parameters defining the nature of surface reflectance.

An analytic upper bound of G:I:max j�00j in the case of the Lafortune model is:

B2 � (zmin)
�4X

i

bki

i (2:254k
2
i + 2:305ki + 1:317); (when ki � 2); (4)

where

bi = maxfjCi;1j; jCi;2j; jCi;3jg:

The sketch of the proof is presented in Appendix B. It is much more complex than the Lambertian

bound.
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Again, we plot �00 of a Lafortune surface to illustrate its physical meaning. A specular surface [20],

is chosen for examination. The setup of the surface element is the same as in Section 4.3.1. As shown

in Figure 8(c), the reflected radiance from steel changes vigorously and the change concentrates in a

very small region. The maximum magnitude of its second-order derivative is much larger than that of a

Lambertian. Hence �qmin is quite small and implies the need for a higher sampling rate.

5 Error Analysis of Off-Plane Relighting

As explained in Section 3.2, off-plane relighting introduces extra error into the reconstructed image if the

scene geometry is inexact or unknown. If we want to bound the off-plane error within " when the novel

light source is positioned at any position behind the qr plane, then we can prove that the sufficient bound

of the depth error is:

j�aj �
27z3"

4c1(3B0 cos�+B1)
; (5)

where j�aj is the distance (along the viewing direction) between the true surface element and the
assumed depth,
z is the depth of the true surface element w.r.t. the qr plane,
cos� = ~V � ~Z,
B0 = G:I:max jd2�j, and
B1 = G:I:max jd3�0j.

The detailed informal proof is given in Appendix C. B0 and B1 can be found using a similar method

as in finding B2. The analytic upper bounds of B0 and B1 of the general BRDF, Lambertian model and

Lafortune model are listed in Appendix D.

Equation 5 indicates that the tolerable depth error is dependent on the orientation of the viewing ray

and the depth of the corresponding surface element. A by-product of the proof of Equation 5 is that the

maximum error occurs when the novel light source is positioned at a distance of around �zmin=2 from

the qr plane, because the coefficient 
=[(1 + 
)2(1 + 
 � �)] of Equation 8 in Appendix C reaches the

maximum 4/27 when 
 = 1=2 (ignoring the influence of small � therein) and the other term in Equation

8 is nearly independent of 
 after magnification. Though the scene depth may not always be zmin, from

Equation 5 we know that closer objects need more accurate geometry. So close objects dominate the

maximum off-plane error when the light source leaves the qr plane. As a result, the error is maximal when

the light source moves around the plane z = �zmin=2. This explains the error distribution in Figure 4 and

will be further verified by our experiments.
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5.1 Depth Layers for Geometry Recovery

Equation 5 suggests that when recovering the local geometry we may actually search the depth along the

viewing direction in a discrete manner. Starting from an initial guess a0, the relation between successive

depths is:

ai+1 �
~"

3B0 cos �+B1

(ai+1cos�+ z0)
3 = ai +

~"

3B0 cos�+B1

(ai cos�+ z0)
3 (6)

where ~" = 27"=(4c1), and z0 is the depth of the camera w.r.t. the qr plane. To simplify Equation 6, we

introduce what we call the radiometric depth:

â =

 
~" cos�

3B0 cos �+B1

! 1

2

(a cos�+ z0) =

 
~" cos�

3B0 cos�+B1

! 1

2

z;

where z = a cos�+ z0 is the depth w.r.t. the qr plane. Then Equation 6 becomes:

âi+1 � â3i+1 = âi + â3i � âi+ 1

2

:

The solution to the above equation is:

âi+1 =
2
p
3
cos

 
1

3
arccos

 
�
3
p
3

2
âi+ 1

2

!
+

4�

3

!
: (7)

We can prove that any depth â between âi and âi+1 can be represented by âi+ 1

2

, i.e., the off-plane error

does not exceed " if â is estimated as âi+ 1

2

. The proof can be found in Appendix E. Equation 7 is valid

only when âi+ 1

2

� 2

3
p
3
, or âi � â(1) = (

3

q
1 +

p
2 +

3

q
1�

p
2)=
p
3 = 0:3441 � � � ; otherwise âi+1 does

not exist, indicating that the depth layer [âi;+1) can simply be represented by âi+ 1

2

. In this sense, â(1)

could be viewed as the “infinity depth” in the reflected irradiance field.

Actually, it is more convenient to divide the scene according to the radiometric depth, because the

possible maximum reconstruction error (recall that Equation 5 is to control the maximum off-plane error

in off-plane relighting) between successive radiometric depth layers is constant. If the optical axis of the

camera is around the normal of the qr plane, using radiometric depth for depth sweeping is a good choice.

However, if some objects’ radiometric depth is near zero, e.g. for oblique light rays (cos � � 1), the

increment between successive âi’s is very small, so the discrete search may not be efficient enough. A

more efficient way is to start searching from approximate geometry for each pixel. The corresponding

geometric depth can be calculated accordingly. In this case, the shape of depth layers depends on the

initial geometry.

In this way we can divide the scene into several layers of depth and any point in the scene can be

‘quantized’ to its ‘representative’ depth. Figure 9 illustrates the concept of depth layers. In Figure 9(a),

the initial geometry is a sphere; while in Figure 9(b), the initial guess is a plane parallel to the qr plane.
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Figure 9: Depth layers with different initial guesses on the geometry. The camera center is at (0; 0:5).
(a) The initial estimated geometry is a sphere centered at the camera. (b) The initial geometry is a plane
parallel to the qr plane.

6 Results

To verify our analysis, we carried out experiments on both synthetic and real images. Before going through

the experimental details, we need to choose a reasonable error tolerance ".

We may choose the tolerance " to be the smallest difference between two successive greylevels to

achieve signal-level reconstruction. However, images captured by CCD cameras usually contain noise

of around 9 greylevels. There also exists noise in synthetic images which are generated by stochastic

rendering such as ray tracing with jittered samples [8]. Moreover, the visual difference of a few greylevels

is not apparent. Therefore, we suggest choosing a tolerance of about 16 greylevels. However, one may

choose other error tolerance according to his/her own practical requirements.

For synthetic experiments, we only consider the surface radiance and hence parameters of a real cam-

era, f , �F and �t, are not taken into account. Since the mapping from computed radiance and greylevel

is linear, the error tolerance " can be set as

" =
ne

255
Imax;

where ne is the tolerable error in greylevel, and
Imax is the radiance that corresponds to greylevel 255.
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(a) true image (b) 0.0938 (sufficient) (c) 0.187 (under-sampled)

(d) error histogram (e) error histogram
of image (b) of image (c)

Figure 10: Results of relighting a glossy Lafortune surface. The sampling bound is 0.103. (a) The ground-
truth image. (b,d) When the sample spacing is sufficient, the error can be controlled within 16 greylevels.
(c,e) When the sample spacing is larger than the sampling bound, the error may exceed 16 greylevels.

A glossy surface is chosen for testing. It is represented by the Lafortune model [20]1. The qr plane

is placed at a distance of 2 units from the glossy dinosaur object. In this case, the computed bound of the

geometry-independent sampling interval is 0.103 when the error tolerance is 16 greylevels. Figures 10(b)

and (c) show the relighting results from images sampled with spacing 0.0938 and 0.187 on the qr plane

respectively. Information on sample spacing is also shown at the bottom of each image. The true image

is shown on the left (Figure 10(a)). Figures 10(d) and (e) show the error histograms (histograms of

the absolute difference images). The histograms clearly show that the error can be controlled within

designated 16 greylevels when the sampling rate is satisfied, and the error exceeds this tolerance when the

sampling rate is inadequate.

Our synthetic experiments can also verify the bound in Equation 5. Unfortunately, as it is only a

sufficient bound, it only guarantees that the off-plane error is below " when the depth error does not

exceed the bound. It is possible that the off-plane error is still below " if the depth error is above the

bound. However, we found in our experiments that three times of the bound can serve as an exact bound.

So we may modify the bound to be three times of its original value. Figures 11(b) and (c) show the

relighting results when the novel light source is placed at � 1
2
zmin = �0:9015 behind the qr plane, with

depth errors for every pixel being exactly the modified bound and twice the modified bound, respectively.
1Only the data at wavelength 450nm is used, where C11 = C12 = 1.11999, C13 =1.01942, k1 =15.4571; C21 =

C22 =1.08378,C23 =0.626672, k2 =65.2179;C31 = C32 =1.01529,C33 =1.00108, k3 =195.773.
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(a) true image (b) depth error equals the (c) depth error is twice the
modified bound modified bound

(d) error histogram (e) error histogram
of image (b) of image (c)

Figure 11: Results of off-plane relighting of a glossy Lafortune surface. (a) The true image. (b,d) When
the depth information is sufficient, the error can be controlled with 16 greylevels. (c,e) When the depth
error is larger than the modified bound, the error may exceed 16 greylevels.

The error tolerance is again 16 greylevels. The true image is shown in Figure 11(a). The error histograms

again show that the error can be controlled if the depth error is below the modified bound.

Furthermore, the maximum error between Figure 11(c) and Figure 11(a) is 22 greylevels when the

light source is at � 1
2
zmin = �0:9015. When the depth information does not change but the light source

is placed at 0.17, 0.33, 0.56, 0.73, 1.09 (it moves perpendicular to the qr plane), the maximum errors are:

7, 16, 19, 20, and 18 greylevels, respectively. Hence, that the maximum off-plane error occurs at around

�1
2
zmin is once more verified.

To carry out the experiment on real surfaces, we built a computer-controllable system that precisely

moves the point light source over a vertical X-Y table. Figure 12(a) shows the computer-controlled qr

plane. A halogen bulb (Figure 12(c)) is used to simulate a point light source. The experiment setup is

shown in Figure 12(b). The whole capture process took place in a dark room with the halogen bulb as

the sole light source, and measures were taken to minimize the interreflection between the object and the

environment.

Both the radiometric and geometric calibrations are necessary in real experiments. For radiometric

calibration, we applied the algorithm in [10] to recover both the response function of the camera and the
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(c)

(a) (b) (d)

Figure 12: Elements of real experiments. (a) Computer-controlled qr plane. (b) Experiment setup. (c)
Halogen bulb. (d) A real surface.

high dynamic range radiance maps. The error tolerance " can be set as:

" = Ee � Emax;

where Ee 2 (0; 1) is the tolerable error in exposure that corresponds to tolerable error ne in
greylevel, and is normalized by Emax, and
Emax is the exposure that corresponds to greylevel 255.

One may find Emax by shooting the camera at the light source and tuning down both the aperture and

the exposure time until the light source produces a greylevel near 255. In this way we only need to record

the aperture area and the exposure time, without measuring the focal length because it will be cancelled

during computation.

For geometric calibration, we applied the toolbox in [5] to compute the intrinsic parameters and a

standard camera calibration algorithm [44] to compute the homography between the image plane of the

camera and the light source plane. Since the camera could not see both the light source and the object due

to the limited FOV, during calibration phase we fixed a thin, light and long straight bar beside the light

source so that the camera can see the far-reaching end of the bar. The bar is perpendicular to the qr plane.

By taking images of the bar when the light source moves on the qr plane, the transform matrix can be

computed because both the intrinsic parameters of the camera and the positions of the end of the bar are

known.

Figure 12(d) shows the real surface we have captured for verification. It is made of steel and is

anisotropic. As its geometry is simple, the light source and the viewing directions are known with respect

to the normal after the geometric calibration. The Lafortune model of the surface BRDF is fit to the high

dynamic range radiance maps by Levenberg-Marquardt method [33]. The surface is by 52cm away from

the qr plane and the geometric independent bound is found to be 1.08cm when the error tolerance is 16

greylevels.
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(a) true image (b) 1 cm (c) 2cm (d) 4cm

(e) error histogram (f) error histogram (g) error histogram
of image (b) of image (c) of image (d)

Figure 13: Results of relighting steel surfaces. The sampling bound is 1.08 cm. (a) The ground-truth
image. (b,e) The sample spacing is just below the sampling bound. (c,d,f,g) The sample spacing is
insufficient. Hence the highlight and glare are widened or separated.

Figure 13 shows the result of relighting from images with different sampling intervals. Figure 13(a) is

the ground truth. From left to right, the sampling rate is reduced, each time by a factor of 2. As shown

in Figures 13(c) and (d), the highlight band is slightly enlarged and double images of the highlight even

appear in (d). Though Figure 13(b) is synthesized from sufficient samples, the errors of several pixels

are still larger than 16 greylevels. This is because of the noise in the captured images and the response

function of the camera.

7 Extension to Directional Source

Our analysis can be easily extended to the case when a directional light source is used during scene cap-

ture. Instead of determining the maximum allowable sample spacing �q, we can calculate the maximum

allowable sampling angle �� � �q=zmin (in either elevation or azimuth).

Rewrite Equation 3 as

�q

zmin

�
1

zmin

s
8"

c1B2

=

s
8"

B2z
2
min � Ilf�2�F�t

=

vuut 8"
~B2(Il=z2min)c2

;

where ~B2 = B2z
4
min.
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~B2 is actually the max term in Equation 2. Il=z
2
min is the emitted radiance of the directional light

source. We can denote this term by ~Il. Making zmin ! 1, we obtain the angular sample spacing for the

directional light source as:

�� �
s

8"

c2 ~B2

;

where c2 = ~Ilf
�2�F�t.

Similarly, we can replace Il=z2 in (Equation 5) by ~Il to determine the error bound when the novel light

source is also directional. For relighting with a directional light source, z ! 1, and hence j�aj ! 1.

This means that the relighting is independent of geometry if only parallel light sources are involved, which

agrees with the common sense.

8 Conclusions and Future Work

In this paper, we have defined the reflected irradiance field for image-based relighting and studied its sam-

pling and reconstruction problems. The reflected irradiance field is based on a tri-planar representation

for the extended plenoptic function that allows the change of both the light source and the viewpoint. For

the sampling problem of the reflected irradiance field, we prove that there exists a geometry-independent

bound of the sampling interval, which is analytically related to the BRDF of the scene. For the reconstruc-

tion problem, we propose a bound of acceptable depth error and the division of the scene geometry into

several depth layers is also presented. Finally, our analysis can also be straightforwardly extended to the

case of directional light source. Experiments are conducted to verify our theoretical analysis.

Currently we choose the error tolerance according to a physically-based metric, so we refer to it as

the radiometric tolerance. In some cases, humans may not notice artifacts even though the radiometric

error is large in the reconstructed image. What is interesting and useful for future work is to determine

the photometric tolerance which takes the response function of human vision into account. Recent work

in psychophysical computer graphics [31, 11] provides a psychophysical framework for measuring the

sensitivity of human vision to artifacts due to undersampling. Another way to incorporate human percep-

tion into our sampling analysis is to analyze the bounds of the psychophysical reflection model that was

recently proposed [32].

In the current work, we compress the reflected irradiance field in the following manner. Firstly, the

captured radiance values are rebinned so that all values associated to a pixel are grouped to form an image.

Then, each of these images is compressed using 2D DCT. Block-coding technique is also used in [28].

Other coding techniques, such as vector quantization, and wavelet compression could be also used to

reduce the data volume. However, random-access and selective decoding must be considered in selecting



Special Issue on Multi-View Modeling and Rendering of Visual Scenes / IJCV 23

a coding scheme in order to improve the performance of our relighting system.
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Appendix A: Proof of Equation 2

By expanding �00, we get,

�00 =
1

d4
[�00`1`1(m1 � `1l1)

2`2 + 2�00`1`2(m1 � `1l1)(n1 � `2l1)`2 + �00`2`2(n1 � `2l1)
2`2+

�0`1(2m1n1 � `1`2 � 2n1`1l1 � 8m1`2l1 + 9`1`2l
2
1) + �0`2(2n

2
1 � `22 � 10n1`2l1 + 9`22l

2
1)+

�(�3`2 � 6n1l1 + 15`2l
2
1)]

where (m1; m2; m3), (n1; n2; n3) and (l1; l2; l3) are the coordinates of ~M , ~N and ~L respectively,
and
�0 and �00 are 1st-order and 2nd-order partial derivatives respectively.

Direct full search can conveniently produce the coefficients in Equation 2, though it might be time-

consuming. However, mimicking the proof in Section 4.3.1, the coefficients of � 00`1`1 and � can be proven

to be exactly z�4min and 3z�4min, respectively.

Appendix B: Proof of Lafortune Bound

Let

�i = Ci;1`1�1 + Ci;2`2�2 + Ci;3`3�3; and  i = Ci;1m1�1 + Ci;2n1�2 + Ci;3p1�3;

where (m1; m2; m3) and (p1; p2; p3) are the global coordinates of ~M and ~P , respectively, and
f ~N; ~M; ~Pg is the local frame at the surface point.

Then

@2[�ki

i `2d
�2]

@q2
= �(ki + 3)�ki

i [`2 + 2n1l1 � (ki + 5)`2l
2
1]d

�4 + 2ki i�
ki�1
i [n1 � (ki + 3)`2l1]d

�4

+ki(ki � 1) 2
i �

ki�2
i `2d

�4

� �(ki + 3)�ki

i G1 + 2ki i�
ki�1
i G2 + ki(ki � 1) 2

i �
ki�2
i G3

It can be verified that when ki � 2,

jG1j = d�4jn1[3� (ki + 5)l21]l1 + n2[1� (ki + 5)l21]l2 + n3[1� (ki + 5)l21]l3j

� h(q) � d�4
q
(ki + 1)(ki + 5)l41 � 2(ki + 1)l21 + 1

where the Cauchy’s inequality is applied. Taking the partial derivative of h(q) w.r.t q shows that h(q)

reaches maximum at q’s such that:

l1 = 0; or l21 =
(ki + 1)(ki + 10)�

q
(ki + 1)(k3i + 9k2i + 24ki � 80)

6(ki + 1)(ki + 5)
< 0:385:

For l1 = 0, h(q) � (zmin)
�4. For the other two l1’s,

(ki + 1)(ki + 5)l41 � 2(ki + 1)l21 + 1 =
1

3
[(ki + 1)(ki + 4)l21 � ki] <

1

3
[0:385(ki + 1)(ki + 4)� ki]

< [0:359(ki + 1:223)]2
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Figure 14: Incorrect depth information will cause extra error when the novel light source is not on the qr
plane.

Therefore

jG1j < 0:359(ki + 1:223)(zmin)
�4:

Similarly,

jG2j <
ki + 2
p
5

(zmin)
�4 and jG3j � (zmin)

�4:

Finally, as both j�ij and j j cannot exceed bi = maxfjCi;1j; jCi;2j; jCi;3jg
�����@

2[�ki

i `2d
�2]

@q2

����� < bki

i (2:254k
2
i + 2:305ki + 1:317)

(zmin)4
;

and thus (4) results.

Appendix C: Proof of Equation 5

Suppose the light source L is off-plane. For ray CA, the exact depth is a = jCAj and the estimated

depth is a0 = jCA0j. AL and A1L intersect the qr plane at q and q1, respectively. Then the depth error is

�a = a� a0 and the off-plane error is:

E =
� jAqj
jALj

�2
E(q)�

� jA1q1j
jA1Lj

�2
E(q1)

=
�

1
1+


�2
E(q)�

�
1��

1+
��

�2
E(q1)

=
��

1
1+


�2
�
�

1��

1+
��

�2�
E(q1) +

�
1

1+


�2
[E(q)� E(q1)];

where 
 =
jLqj
jAqj

, � =
��a

jAq1j
and � =

~V � ~Z
~L � ~Z

.
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On the other hand,

E(q)� E(q1) = (q � q1)E
0(~q); (~q is between q and q1)

therefore

jEj =



(1 + 
)2(1 + 
 � �)
�
������
 
2�


�

1 + 
 � �

!
E(q1)��a�E 0(~q)

����� ; (8)

where � =
q
�2 + 1� 2�(~L � ~C): It can be proven that

�(~L � ~Z) � 1; (9)

but we have to omit the proof here.

Since (8) is too complex, it is necessary to simplify it in order to achieve valuable results. When � is

small,




(1 + 
)2(1 + 
 � �)
�




(1 + 
)3
�

4

27
;

����� �

1 + 
 � �

����� � 1



;

and jAqj � jAq1j � jA~qj. Therefore

jEj � 4
27

�
3j� j B0

jAq1j2 + j�aj� �
B1

jA~qj3
�
� c1

� 4
27

�
3j� j B0

jAqj2 + j�aj� �
B1

jAqj3
�
� c1

= 4c1
27jAqj3 (3�B0 + �B1)j�aj

= 4c1(~L�~Z)2
27z3

(3(~V � ~Z)B0 + �(~L � ~Z)B1)j�aj

� 4c1
27z3

(3(~V � ~Z)B0 +B1)j�aj;

where B0 andB1 are the normal-independent maxima of � and �0, respectively, or more precisely,

B0 = G:I:max d2�; B1 = G:I:max d3j�0j:

In the last inequality, (9) is applied.

Then, in order that jEj � ", it is sufficient that

4c1
27z3

(3(~V � ~Z)B0 +B1)j�aj � ";

or

j�aj �
27z3"

4c1(3B0 cos�+B1)
;

where cos� = ~V � ~Z:
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Appendix D: Analytic Bounds for B0 and B1

For general BRDFs,

B0 = maxf�g; and B1 � maxfj�0`1j+ 0:5j�0`2j+ 2�g:

For the Lambertian model,

B0 = �0; and B1 = 2�0:

For the Lafortune model,

B0 �
X
i

bki

i ; and B1 �
X
i

bki

i (1:5ki + 1):

Appendix E: âi+1

2

Can Represent Every â 2 [âi; âi+1)

We want to prove that for every â 2 [âi; âi+1),

â� â3 � âi+ 1

2

� â+ â3:

Indeed,

1. if âi � â � âi+ 1

2

, then

â� â3 < âi+ 1

2

= âi + â3i � â+ â3:

2. otherwise, if âi+1 < 1, then it is necessary that âi+ 1

2

� 2

3
p
3
, hence from (7), âi+1 � 1=

p
3.

Therefore

â3i+1 � â3 = (âi+1 � â)(â2i+1 + âi+1â+ â2) � (âi+1 � â) � 3â2i+1 � âi+1 � â:

So â� â3 � âi+1 � â3i+1 = âi+ 1

2

< â + â3.

3. otherwise, âi+ 1

2

> 2

3
p
3
. One may check that

x� x3 �
2

3
p
3
; 8x � 0:

Therefore, â� â3 � 2

3
p
3
< âi+ 1

2

< â+ â3.


