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Abstract

Existing halftoning algorithms usually drop colors and
fine details when dithering color images with binary dot
patterns, which makes it extremely difficult to recover the
original information. To dispense the recovery trouble in fu-
ture, we propose a novel halftoning technique that converts
a color image into binary halftone with full restorability to
the original version. The key idea is to implicitly embed
those previously dropped information into the halftone pat-
terns. So, the halftone pattern not only serves to reproduce
the image tone, maintain the blue-noise randomness, but al-
so represents the color information and fine details. To this
end, we exploit two collaborative convolutional neural net-
works (CNNs) to learn the dithering scheme, under a non-
trivial self-supervision formulation. To tackle the flatness
degradation issue of CNNs, we propose a novel noise incen-
tive block (NIB) that can serve as a generic CNN plug-in for
performance promotion. At last, we tailor a guiding-aware
training scheme that secures the convergence direction as
regulated. We evaluate the invertible halftones in multiple
aspects, which evidences the effectiveness of our method.

1. Introduction
Halftoning is commonly used in the printing indus-

try [44] to reproduce tone with limited colors, e.g. black
and white, due to the cost consideration. During this pro-
cess, both the color and fine details of the original image are
inevitably lost. This makes the originals nearly impossible
to be recovered from these degraded halftones. Even the
state-of-the-art inverse halftoning methods [48, 16] can on-
ly recover an approximate grayscale version, since the color
is usually dropped before halftoning. Apparently, resolving
this dilemma requires a fore-looking halftoning technique
that retains the necessary information for restoration. This
paper makes the first attempt to explore this novel problem.

Traditional halftoning methods distribute halftone dots
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Figure 1. Observation: the halftone variants of David (a) (b) (c)
present similar visual quality but with different binary patterns, as
the overlaid RGB image visualized in (d). It indicates the possi-
bility of modulating the patterns for additional usage.

mainly for tone reproduction, and we observe that this tar-
get still permits certain perturbation in term of the desired
binary pattern, as evidenced in Figure 1. It indicates the
possibility of utilizing such degree of freedom for addition-
al usage, i.e. embedding the potentially missing color in-
formation and fine details. Formally, this brings out a new
concept, i.e. reversible halftoning, which converts a color
image to a halftone that possesses restorability to the origi-
nal color version. Inspired by invertible grayscale [47], we
adopt the invertible generative model to formulate our prob-
lem. However, generating quality halftones is much more
challenging than decolorization. First, convolutional neural
networks (CNN) that work with spatially shared kernels is
not native for halftoning, which suffer from flatness degra-
dation (as detailed in Section 3.1). Figure 3 illustrates an ex-
ample that CNNs fail to introduce spatial variation in those
flat regions. Second, it is non-trivial to achieve both com-
plex visual simulation and accurate information embedding
via optimization over 1-bit pixels. Furthermore, the discrete
binary pattern poses challenge to capturing its properties via
general pixel-wise metrics.

To address flatness degradation, we propose a Noise In-
centive Block (NIB) that introduces spatial variation to the
feature space but still reserves the information intactness
through training along with the CNNs. In fact, NIB is a
model-agnostic plug-in and hence applicable to other rel-
evant applications (see Section 4.3). We find that the e-
quipping the dithering network with NIB breaks the obsta-
cle of flatness degradation and make it feasible to dither



constant-valued images. Importantly, this feature enables us
to formulate the blue-noise profile through low-frequency
penalization on constant-grayness halftone. To achieve the
binary halftone, we append the dithering network with a
binary gate that takes gradient propagation tricks to allow
training with quantization. The model is trained end-to-end
with highly mixed objectives, which is formulated as four
loss terms: binarization loss, blue-noise loss, halftone con-
formity loss, and invertibility loss. Indeed, these partially
conflicting loss terms complicate the training, especially in
the case of inaccurate proxy gradient from the binary gate.
These challenges are circumvented by our guiding-aware
training scheme.

Comparative evaluation and ablation study illustrate the
advantages of our proposed method, and application explo-
ration tells the generic usability of our proposed noise in-
centive block. The paper contributes in:

• The innovative idea of reversible halftoning, which of-
fers a brand new functionality to existing halftoning
applications. It saves the ill-posed inverse halftoning
problem at the source.

• A model-agnostic plug-in, noise incentive block that
addresses the flatness degradation of CNNs. It finds
general applicability in image synthesis tasks.

• An effective measurement for discrete halftoning pat-
terns, which may inspire further exploration in relevant
direction, e.g. manga screentone processing.

2. Related Works
2.1. Digital Halftoning

Many digital halftoning techniques have been proposed
in the past half century, including ordered dithering [3, 44],
error diffusion [10], dot diffusion [21], and direct binary
search (DBS) [37]. The primary goal of the above classic
approaches is to retain the local tone of the original image
with least visual artifacts introduced. To avoid extra pat-
tern being introduced, it is desirable for the halftone im-
ages to own the blue-noise property [32]. To achieve this,
several techniques are further proposed, such as blue-noise
mask [33], patterns optimization [12, 26, 2], variable thresh-
old [34, 55], and recursive tiling strategy [22]. Unfortu-
nately, blue-noise algorithms usually over-blur fine detail-
s. To better preserve the fine structures while pursuing the
blue-noise property, several methods have been proposed
to generate halftone patterns guided by edge enhancemen-
t techniques [8, 14, 23, 27]. Different from the edge en-
hancement techniques, Pang et al. [35] further proposed to
optimize both structural similarity and tonal similarity to
capture human-vision-sensitive structures. However, while
digital halftoning has long been a widely-explored topic for

researchers, none of the existing methods considers the in-
vertibility, i.e. the ability to recover the original version.

2.2. Inverse Halftoning

Inverse halftoning has been studied in the past three
decades, mainly due to the need to recover the pictures
from the legacy printed media. A straightforward ap-
proach is to filter the halftone image with customized fil-
ters [17, 46]. In order to better restore high-frequency de-
tails, Kite et al. [20] proposed to exploit the gradient-based
space-varying filtering on the error-diffused images. To re-
lieve the prior information requirement, some works pro-
pose to formulate the grayscale reconstruction problem as
projection onto a convex set (POCS). Yue and Chen [53]
proposed to inverse halftoning via a hopfield neural net-
work [13] based optimization model. Xiong et al. [50]
proposed to separate halftoning noises from original im-
age through edge detection, and reconstruct the original
image based on overcomplete wavelet expansions. Mese
and Vaidyanathan [31] further proposed to utilize a pre-
computed look-up table (LUT) for grayscale restoration,
which greatly improves both efficiency and effectiveness.
Multiple dictionary learning based variants have been pro-
posed since then [24, 25, 39, 40, 11]. Most recently, deep
learning methods [16, 48] have been proposed to solve the
inverse halftoning, and achieve the state-of-the-art perfor-
mance. However, inverse halftoning is ill-posed by nature
and can only ”guess” a rough grayscale version. In contrast,
our invertible halftone enables a deterministic restoration
process, which thus can achieve higher accuracy.

2.3. Invertible Generation

The idea of invertible generation is mainly studied in the
data hiding field, e.g. hiding copyright text or watermarks
in images [29, 52, 56]. Later, researchers attempted to hide
an image into anther image, such as hiding chromatic chan-
nels into its grayscale version [7, 51], or hiding one view of
a stereoscopic image into the other view [41, 42]. Recently,
a significant improvement has been made by using the deep
convolutional neural networks. In particular, Xia et el. [47]
proposed to convert color images to invertible grayscale im-
ages that can be later inverted back to its color version via an
encoding-and-decoding framework. A similar framework is
adopted to generate invertible low-resolution images from
high-resolution input with details compactly encoded [28].
Our reversible halftoning can be classified into this stream
of work, addressing a more challenging problem with novel
technical designs. As another line of such technique, in-
vertible neural networks (INNs) [15, 19, 4, 49] formulate
the network architecture with explicit invertible operations.
However, compared to the encoding-and-decoding based
invertible model [47], such strong constraint inevitably re-
stricts the model capability and makes the training tricky.



+

Input color Halftoning network Restoration networkInvertible halftone

Restored color

𝐈𝑐 𝐎ℎ

𝐎𝑐

𝐍

Input color Dithering network Restoration networkInvertible halftone

𝐈𝑐 𝐎ℎ 𝐎𝑐

+
𝐍

NIB
+

-

Restored color

𝐎𝑐𝐎𝑐

NIB

Figure 2. System overview. Given a color image input Ic, the dithering network generates a bitonal halftone image Oh, which could be
inverted back to the original color version Oc by the restoration network. Particularly, the dithering network is equipped with a noise
incentive block (NIB) and a binary gate, in order to enable the binary halftoning for arbitrary input.

3. Reversible Halftoning Pattern
We aims to learn reversible binary patterns toward

halftoning color images, which is required to offer visual
pleasantness and embed restoration-necessary information
in the meantime. Figure 2 shows the overview diagram.

3.1. Network Architecture

We adopt the U-shaped architecture for both the dither-
ing networks and the restoration network. Both networks
share a similar structure, containing three downscale block-
s, three upscale blocks, four residual blocks, and two convo-
lution blocks. The detailed architecture parameters are pro-
vided in the supplementary material. Note that, we adopt
U-Net as network backbone just because its enlarged re-
ceptive field, and other qualified CNN architectures may al-
so works. Additionally, we propose two key designs for
the dithering network, i.e. noise incentive block and binary
gate, which enables the CNN to model halftoning properly.

Noise Incentive Block. We find that typical CNNs, con-
sisting of convolutional layers with bias terms and activa-
tion functions, are unable to introduce spatial variation to
the output when fed with a flat input. We call this phe-
nomena flatness degradation, which is caused by the con-
volution paradigm with spatially shared kernels. Formally,
the convolution of a constant signal s(x) ≡ c and an arbi-
trary kernel function k(x) is definitely anther constant sig-
nal s̃(y) = c · µ(k(x)) where µ(·) takes the mean value.
So, given a flat input X, the manipulation of CNN degrades
to a scaling operation Y = αX regardless of the CNN pa-
rameters. Figure 3 illustrates such an example. As a result,
flatness degradation hinders the CNN to dither a constant-
grayness, which can disable the formulation of blue-noise
profile (introduced in Section 3.2) since the blue-noise pro-
file is mostly measured over the constant-grayness [43, 34].

To circumvent the flatness degradation, we propose the
Noise Incentive Block (NIB) that can be used as a model-
agnostic plug-in for CNNs. The key idea is to introduce
spatial variation to the feature representation but never con-
taminate the intactness of the original input information.
For simplicity, a Gaussian noise map is exploited as additive

(a) Input (b) Intermediate Feature maps (c) halftone

Figure 3. Visualization of CNN halftoning. Due to the flatness
degradation, typical CNNs fail to generate spatial variation in flat
regions (up row); The NIB equipped CNNs can address the limi-
tation effectively (bottom row).

variation proxy in the learned feature space: f1(Ic)+f2(N),
where both f1 and f2 are single convolution layer and N is
a dynamically sampled Gaussian noise map. Equipped with
NIB, our dithering network is free of flatness degradation
and thus can generate binary halftone in flat regions, as the
visualized results shown in Figure 3. In practice, the NIB
brings advantages to our dithering model in two aspects:
(i) It allows us to formulate the blue-noise profile through
low-frequency constraint on dithered constant-grayness; (ii)
It even promotes the performance in general cases (see Ta-
ble 3) since the noise randomness favors the dithering pro-
cessing to focus on pattern distribution instead of individu-
al pixel values. Importantly, as a generic solution to tackle
flatness degradation, our proposed NIB also finds noticeable
advantages in other relevant applications, which is explored
in Section 4.3.

Binary Gate. Another special design for the dithering
network is the binary gate B(·) that quantizes the network
output Õh to be a strict binary image Oh = B(Õh). We
explicitly adopt a binary gate because the soft non-binary
penalty is insensitive to tiny deviations, i.e. near-0 or near-1
valued pixels, which is vulnerable to the quantization when
stored as 1-bit bitmap and thus hurts the restoration accu-
racy. However, there is one obstacle should be noted that
the binary gate is non-differentiable. To enable the joint
training, we use Straight-Through Estimator [5] on the bi-
narization when calculating the gradients.



3.2. Loss Function

Our network is trained with the loss function defined in
Eq. 1, consisting of halftone conformity loss LC , blue-noise
loss LN , binarization loss LB , and invertibility loss LV .

L = ω1LC + ω2LN + ω3LB + LV , (1)

where the hyper-parameters ω1 = 0.6, ω2 = 0.3, and ω3 =
0.1 are set empirically.

3.2.1 Halftone Conformity Loss

To ensure that the generated halftone is visually similar to
the input, we optimize the tone and structure similarities, as
suggested by [35]. Hence, our halftone conformity loss LC

is formulated as:

LC = ℓT + σℓS , (2)

where the tone loss ℓT and the structure loss ℓT is combined
with the coefficient σ = 0.02 empirically.

Specifically, given the color input Ic and the generated
halftone Oh, the tone loss ℓT is formulated as:

ℓT = E Ic∈I{||G(Oh)−G(Ilc)}||2}, (3)

where Ilc is the luminance channel of the original input im-
age Ic. G(·) denotes the Gaussian filter with a 11×11 kernel
size. || · ||2 denotes the L2 norm (MSE). E Ic∈I{·} denotes
the average operator over all input images Ic in the training
dataset I. Accordingly, the structure loss ℓS measures the
structure similarity index measure (SSIM) [45] between Oh

and the luminance channel of the original image Ilc:

ℓS = E Ic∈I{||SSIM(Oh, I
l
c)||1}, (4)

3.2.2 Blue-Noise Loss

The blue-noise property is typically required in tradition-
al halftoning algorithms [43], so as to avoid injecting extra
patterns. Although SSIM has been shown to be useful to
achieve blue-noise property [35], we found that adopting
SSIM alone as the loss term is insufficient to enforce the
blue-noise property. Instead, we design an explicit blue-
noise loss in our loss function to suppress the potential pat-
tern artifacts. The basic idea to penalize the low-frequency
component on the dithered constant-grayness, since human
vision system is more sensitive to low-frequency signal.
Accordingly, we prepare a group of constant-valued color
images S and include them in our training dataset. The
blue-noise loss LN is formulated on the halftone images
generated from these constant-valued images, as

LN = E Ic∈S{||(DCT(Oh)−DCT(Ic))⊙M||1}, (5)

(a) Input (b) Intermediate Feature maps (c) halftone

(a) (b) (c)

(d) Input grayscale (e) Blowup of (b) and (c)

Figure 4. Effects of the halftone conformity loss and blue-noise
loss. (a) Without conformity loss and blue-noise loss; (b) Without
blue-noise loss; (c) With the full loss.

where DCT(·) denotes the discrete cosine transformation
(DCT), ⊙ means element-wise product, and M denotes a
constant binary mask with the low-frequency components
set to 1 and others set to 0. Specifically, we regard the first
3.8% low-frequency DCT coefficients as the target compo-
nent to minimize, and the result shows it works well. Fig-
ure 4(a), (b) exhibit visually annoying stripe patterns, while
in comparison, additionally employing the blue-noise loss
resolves this problem effectively (c).

3.2.3 Binarization Loss

Although the binary gate explicitly binarizes the dithering
network output, it relies on a rough gradient estimator to
enable the gradient propagation. However, the straight-
through estimator simply use an identity gradient, which
actually makes the binarization operation B(·) ignored in
the backward propagation. To guarantee the training stabil-
ity, we encourage the input value to B(·) to be as close to
0 or 1 as possible, which is formulated as the binarization
loss LB :

LB = E Ic∈I{|| min
d={0,1}

{|Õh −Cd|}||1}, (6)

where Õh is the pseudo halftone image obtained before the
binary gate. Cd is a constant-value matrix with the same
size as Õh in which all elements are equal to d, | · | is the
element-wise absolute operator, min{·} is the element-wise
minimum operator, and || · ||1 denotes the L1 norm. In ex-
periment, dropping LB would collapse the training.

3.2.4 Invertibility Loss

While the three losses above regulate the visual quality of
the halftone, the invertibility loss LL ensures the restored
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Figure 5. Halftone output under different training schemes. (a)
Input; (b) Joint training from scratch; (c) Warm-up training for
130 epochs w/o guidance loss; (d) Error diffusion; (e) Warm-up
training for 28 epochs with guidance loss. (f) Two-stage training.

image to be as similar to the input as possible, formulated
in both pixel level (measured by pixel-wise MSE) and per-
ceptual level (measured by MSE of VGG features):

LV = E Ic∈I{||Oc − Ic||2 + λ||Ψ(Oc)−Ψ(Ic)||2}, (7)

where Ψ(·) denotes the feature map from the conv4 4 lay-
er of a pretrained VGG-19 network [38], which empiri-
cally represents the perception feature of images. Weight
λ = 2.0 × 10−4 is empirically set to balance the magni-
tudes between the two domains. Under joint training, the
invertibility loss propagates gradient to both dithering net-
work E and restoration network D.

3.3. Training Scheme

To learning desired halftone patterns, the dithering and
restoration networks are trained jointly by minimizing the
loss function in Eq. 1. However, training the whole model
from scratch is vulnerable to local minimal because of the
challenging optimization target. Figure 5(b) shows the fail-
ure of halftones. To circumvent this problem, we propose
to adopt the two-stage training scheme. In the first stage,
we aim to warm up the dithering network alone, so that
it can generate visually pleasant halftone images. To sta-
bilize the training, the binary gate is temporally removed.
Unfortunately, this relaxation still fail to guarantee satisfac-
tory halftones (Figure 5(d)), and it is even associated with
slow convergence, as shown in Figure 6 (green curve). To
boost the training, we propose to explicitly provide a ref-
erence halftone image Ih to guide the training. For sim-
plicity, the classical error diffusion [34] is employed as the
reference. However, directly measuring the pixel-wise d-
ifference between the predicted halftone and the reference
does not work, since per-pixel inspection can never capture
the intrinsic feature of binary halftone patterns.
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Figure 6. Halftone visual loss against iteration of warm-up training
with and w/o the guidance loss LG.

Halftone Pattern Measurement. Inspired by perceptual
loss [54], we propose to measure the halftone pattern differ-
ence in continuous feature domain. Specifically, it is mod-
eled by a pretrained inverse halftoning network F (detailed
in supplementary material), which shows decent sensitivity
to capture the halftone patterns. Accordingly, we formulate
the guidance loss LG as

LG = E Ic∈I{||F(Oh)− F(Ih)||2}, (8)

Then, we train the dithering network with the combined
loss: LG + ω1LC + ω2LB + ω2LN . The red curve in
Figure 6 shows the high training efficiency. With only 28
epochs, it is able to generate visual decent results, as shown
in Figure 5(e). Anyhow, there is no need to train it until
convergence since visually good halftone is just part of the
terminal target.

In the second stage, we drop the guidance loss and joint-
ly train the whole model under the full loss in Eq. 1 for
another 115 epochs. Figure 5(f) shows the final result. With
the ADAM solver [18], it takes 143 epochs to complete the
whole training. In both stages, we leverage the ReduceL-
RonPlateau learning rate scheduler to manage the learning
rate, which is set to 0.0001 initially and then halved when
the training loss stops to decrease.

4. Experimental Results
Dataset. Our training dataset is collected from the pub-
licly available VOC2012 dataset [9]. There are 17, 125 col-
or images in the dataset. We randomly select 13, 758 of
them for training, and reserve the rest 3, 367 images for
quantitative evaluation as testing dataset. All these images
has the size of 256× 256 by cropping and resizing.

The evaluation conducted on the halftone quality and it-
s restorable accuracy, for which we use the same model
trained with default hyper-parameters (defined in Eq. 1).
The source code and trained model are available at: http-
s://github.com/MenghanXia/ReversibleHalftoning

4.1. Halftone Quality

Visual Conformity. We measure the visual conformity of
the halftones to the input in terms of tone and structure.

https://github.com/MenghanXia/ReversibleHalftoning
https://github.com/MenghanXia/ReversibleHalftoning


Table 1. Evaluation on halftone images in terms of PSNR, and
SSIM. Higher PSNR/SSIM indicate better quality.

Method
PSNR SSIM

Mean Stddev Mean Stddev
Ostromoukhov method 41.728 1.1235 0.1007 0.0690

Structure-aware halftoning 21.803 2.2570 0.0340 0.0500
Ours (grayscale input) 33.262 0.6206 0.1594 0.0888

Ours (color input) 32.861 0.7899 0.1573 0.0877

Our methodStructure-aware halftoning

Ostromoukhov methodOriginal image

34.532 / 0.4548

33.877 / 0.4965 36.798 / 0.5913

Ramp (0-255)

Ostromoukhov method

Structure-aware halftoning

Our method

Ramp (0-255)

Ostromoukhov method

Structure-aware halftoning

Our method

Our methodStructure-aware halftoning

Ostromoukhov methodOriginal image

34.532 / 0.4548

33.877 / 0.4965 34.239 / 0.5872

Figure 7. Arm with legible structures. The PSNR/SSIM of each
halftone image is annotated for reference.

Following the practice in [35], the tone consistency is mea-
sured by PSNR between the Gaussian-filtered halftone and
the Gaussian-filtered luminance channel of the input, and
the structure consistency is measured by SSIM between the
halftone and the luminance channel of the input. We perfor-
m the experiment over 3, 367 grayscale images (decolorized
from our testing dataset), as existing halftoning methods
can only dither grayscale images. Two classical halfton-
ing methods that generates high-quality halftones are se-
lected as our competitors, Ostromoukhov method [34] and
the structure-aware halftoning method [35]. In our exper-
iment, the structure-aware halftoning method is used with
default parameters for quantitative evaluation while case-
by-case tuned result is provided for visual comparison. The
statistics are tabulated in Table 1. Among all, our method
achieves the best comprehensive performance of tone sim-
ilarity (PSRN) and structure similarity (SSIM). Figure 7 il-
lustrates an example for visual comparison. Besides, our
method obtained as good result from color image dithering.

Blue-Noise Profile. As usually, the blue-noise property of
halftoning methods is analyzed on their generated halftones
of constant-grayness images. Specifically, we compute the
Fourier amplitude spectrum and radially averaged power
spectra [35]. The Fourier amplitude spectrum indicates
the amplitude of the frequency components where lower-
frequency components are expected to have lower ampli-
tude in blue-noise profiles. The radially averaged pow-

Halftone Fourier amplitude Radially averaged power spectra Halftone Fourier amplitude Radially averaged profile

Figure 8. Spectral analysis on the halftone of constant-grayness
(grayness=0.8). Ostromoukhov method (top); Structure-aware
halftoning (middle); Our method (bottom).

er spectrum visualizes the blue-noise property in 1D. As
shown in Figure 8, all three results achieves certain de-
gree of blue-noise property. The Ostromoukhov method and
structure-aware halftoning performs slightly better than our
method since they only target for halftone quality without
invertibility consideration. Actually, our method trades the
blue-noise property for the restoration accuracy, as both the
color information and the blue-noise compete for the distri-
bution of halftone dots.

4.2. Restoration Accuracy

We compare our method with the state-of-the-art inverse
halftoning method, PRL-Net [48], which recovers grayscale
from error diffused halftones. Anyway, this comparison
may not be very appropriate since the input to PRL-Net is
error-diffused halftones, while the input to our restoration
network is the information-encoded invertible halftones. S-
ince PRL-Net can only restore grayscale images, we pre-
pared 3, 367 grayscale images (decolorized from our test-
ing dataset) for comparison, and additionally evaluate our
method on color version restoration from the associated in-
vertible halftones. Table 2 presents the statistics of both
PSNR and SSIM, and our method outperforms PRL-Net in
both metrics. The numerical superiority is not significant
because the major difference lies in fine details that are less
sensitively captured by PSRN while matters visual quality.
Figure 9 illustrates one challenging example that has rich
details with low resolution. PRL-Net fails to restore the
fine facade details and the text characters. In comparison,
our method not only recovers both fine details and text, but



Table 2. Evaluation on restored images by PSNR, and SSIM.
Restoring color is only feasible by our method.

Dataset Method
PSNR SSIM

Mean Stddev Mean Stddev

Grayscale
PRL-Net 29.693 3.4732 0.8796 0.0564

Ours 30.386 3.0381 0.9077 0.0395
Color Ours 28.130 2.6507 0.8592 0.0470

(c) Our restored color

25.707 / 0.8561

27.117 / 0.877426.454 / 0.8479

(a) Inverse halftoned (b) Our restored grayscale

(d) Ground truth
Figure 9. Inverse halftoning vs. ours. The red arrows point to the
problematic reconstruction.

also recovers the original colors when the original input is
color version. Our superiority comes from the encoded in-
formation in the invertible halftone when PRL-Net [48] has
to ”guess” the missing information.

In fact, inverse halftoning techniques can be used to
recover color images from color halftones, i.e. channel
by channel. However, as a naively extension of binary
halftone, color halftones require three channels to store
the patterns and thus have restricted application scenarios,
which will not be discussed here.

4.3. Utility of Noise Incentive Block

Benefits to Reversible Halftoning. As mentioned in Sec-
tion 3.1, our proposed noise incentive block (NIB) en-
ables the dithering network to generate binary halftones for
constant input. Figure 8 demonstrates its effectiveness in
dithering a constant-gray image. To further analyze the ef-
fect, we conduct an ablation study on the NIB of our dither-
ing network. Note that, when NIB is not used, the blue-
noise loss cannot be applied since it is formulated on the
dithered constant-grayness. Regarding this, we intentional-
ly remove the blue-noise loss in all model variants to avoid
inducing other factors. The quantitative result over the col-
or testing dataset is tabulated in Table 3. Interestingly, the
statistics shows that equipping NIB to the dithering net-
work improves both the halftone generation and color im-
age restoration. It is probably because the randomness in-
troduced by NIB favors the dithering process, i.e. focusing
on pattern distribution instead of individual pixel values. In

Table 3. Ablation analysis on noise incentive block (NIB). Statistic
over the color testing dataset.

Category Variant
PSNR SSIM

Mean Stddev Mean Stddev

Halftoning
Ours/NIB 31.915 1.8185 0.1514 0.0827

Ours 33.734 0.6078 0.1702 0.0906

Restoration
Ours/NIB 27.743 2.2795 0.8667 0.0420

Ours 29.112 2.9705 0.8826 0.0430

(a) Model w/o proxy input (b) Model with proxy input
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Figure 10. Performance comparison between the model without
(top row) and with NIB equipped (bottom row). The color-coded
error maps visualize the deviation w.r.t the ground truth.

addition, CNNs also partially degrades in smooth regions,
which hinders the generation of desired halftone patterns.
Figure 10 shows an example to verify this hypothesis.

Application to Generative Model. As a generic solution
to address flatness degradation, our noise incentive block
(NIB) is evaluated in two relevant applications that are re-
quired to generate spatially variation from flat input. First,
we apply NIB to color image encoding [47] that encodes a
color image into its grayscale version by representing the
color information as imperceptible texture patterns. Ob-
viously, if the input image contains some constant-valued
regions, the color-encoded texture pattern cannot be gener-
ated properly because of flatness degradation and hence af-
fects the color restoration. Figure 11 shows an example that
evidences that NIB can address this limitation effectively.
Quantitative evaluation on DIV2K dataset [1] is tabulated
in Table 4. In addition, we further apply NIB to improve
image synthesis from semantic layout [36]. Despite the em-
ployed CNN model has a noise input along with the seman-
tic layout, the semantic layout still challenges the convo-
lution layers with flatness degradation because the noise is
just used as an initialized result, instead of tackling flatness
degradation like NIB. Figure 12 illustrates the comparative
results, showing that the NIB-equipped model exhibits no-
table advantages in synthesizing more realistic textures with
sharp details. This is reflected by the significantly decreased
FID [30] on benchmark Cityscape [6], as shown in Table 4.
It makes no gain in the indirect segmentation accuracy s-



Table 4. Quantitative evaluation on applying NIB to the state-of-
the-art models of invertible grayscale and semantic image synthe-
sis respectively.

Method PSRN SSIM
IG [47] 38.411 0.9765
IG+NIB 39.314 0.9811
Method mIOU Accu FID

SPADE [36] 62.3% 81.9% 71.8
SPADE+NIB 61.9% 81.8% 54.6

(a) Input semantic layout (b) SPADE

(c) SPADE+NIB (d) Potential ground truth

(a) Color input (b) Grayscale 
by IG

(d) Grayscale by 
IG+NIB

(c) Restored 
color patches

Figure 11. Applying our NIB to IG [47] for color image encoding.
The color patches are decoded from the encoded grayscales.

(a) Input semantic layout (b) SPADE

(c) SPADE+NIB (d) Potential ground truth

(a) Color input (b) Grayscale 
by IG

(d) Grayscale by 
IG+NIB

(c) Restored 
color patches

Figure 12. Applying our NIB to SPADE [36] for semantic image
synthesis. The red arrows point to unrealistic blurriness.

ince NIB benefits spatially variant generation while having
negligible influences on pixel alignment.

4.4. Discussion

The invertible halftone possesses high restorability to
the original color version because the necessary informa-
tion is embedded via the learned binary pattern. Conse-
quently, outside interferences to the halftone patterns may
affect their reversibility potential. To explore the robust-
ness, we apply several typical disturbances to the generat-
ed halftones, include flipping, partial removal, and random
impulse noises. Figure 13 visualizes the qualitative com-
parison. Since the information-embedded patterns are sen-
sitive to flipping, the restored color image (b) shows texture
artifacts and incorrect colors. Differently, it shows relative-
ly good tolerance to partial removal (b) and random noises
(c), which indicates good potential to be used in real-world
applications. This is partially confirmed by the decent per-

(b) Flipping (c) Partial removal (d) Random noise(a) No operation

Figure 13. Robustness study of reversible binary patterns. The
color images (bottom row) are restored from the halftone variants
(top row) with different interferences. The random noise is 10%
impulse noise, which is more destructive than Gaussian noise.

formance in printing-and-scanning scenario, as provided in
the supplementary material.

In our current formulation, both the information embed-
ding and the blue-noise requirement are competing for the
distribution of halftone dots, which means a trade-off has to
be taken. So, to improve the overall performance demand-
s a larger solution space. One possible solution to enlarge
the representation space, namely to use a large resolution
for the generation of invertible halftones, e.g. the halftone
resolution can be ×2, ×4 or even larger fold of the input
size. This direction offers promising potential to introduce
more requirements on the invertible halftones, such as the
halftoning styles, which will be an interesting future work.

5. Conclusion

We proposed the conceptually novel reversible halfton-
ing technique, which offers high restorability along with
state-of-the-art visual quality. As a stronger alternative, it is
directly applicable to traditional halftoning applications but
saves the potential trouble of tacking the ill-posed inverse
halftoning. To achieve this, we proposed the noise incentive
block (NIB) to tackle flatness degradation of CNNs, which
not only promotes our dithering performance greatly but al-
so finds impressive utilities in other relevant applications.
Besides, the blue-noise loss is formulated as low-frequency
constraint on constant-grayness, which effectively guaran-
tees the visual pleasantness of halftone patterns. To handle
the tricky optimization landscape, we proposed to modulate
the priorities of different loss terms in two stages. Exten-
sive experiments verified the advantages of our method, and
we expect both the reversible halftoning approach and key
technical designs to inspire follow-up works.
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