
End-to-End Line Drawing Vectorization

Hanyuan Liu,1 Chengze Li,2 Xueting Liu,2 Tien-Tsin Wong1*

1 The Chinese University of Hong Kong
2 Caritas Institute of Higher Education

liuhy@cse.cuhk.edu.hk, czli@cihe.edu.hk, tliu@cihe.edu.hk, ttwong@cse.cuhk.edu.hk

Abstract

Vector graphics is broadly used in a variety of forms, such as
illustrations, logos, posters, billboards, and printed ads. De-
spite its broad use, many artists still prefer to draw with pen
and paper, which leads to a high demand of converting raster
designs into the vector form. In particular, line drawing is a
primary art and attracts many research efforts in automati-
cally converting raster line drawings to vector form. However,
the existing methods generally adopt a two-step approach,
stroke segmentation and vectorization. Without vector guid-
ance, the raster-based stroke segmentation frequently ob-
tains unsatisfying segmentation results, such as over-grouped
strokes and broken strokes. In this paper, we make an attempt
in proposing an end-to-end vectorization method which di-
rectly generates vectorized stroke primitives from raster line
drawing in one step. We propose a Transformer-based frame-
work to perform stroke tracing like human does in an auto-
matic stroke-by-stroke way with a novel stroke feature repre-
sentation and multi-modal supervision to achieve vectoriza-
tion with high quality and fidelity. Qualitative and quantita-
tive evaluations show that our method achieves state of the
art performance.

Introduction
Vector graphics play an important role in graphic design.
The resolution independence and easy-for-editing features
allow vector graphics to be used in a variety of forms, such
as illustrations, logos, posters, billboards, and printed ads.
Despite the broad use of vector graphics, many artists still
prefer to draw with pen and paper which is more natural and
easier to control. This leads to a high demand of converting
raster designs into the vector form, especially for vectorizing
line drawings which is a primary art form of graphic design.
There exist many vector graphics editing softwares to help
artists trace the vector lines from a raster line drawing, such
as Adobe Illustrator and CorelDRAW, but the manual trac-
ing process is still tedious and time-consuming.

Several research attempts have been made to automati-
cally vectorize a raster line drawing. These methods gener-
ally face two key challenges in the line drawing vectoriza-
tion task, stroke segmentation to identify individual strokes

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b) (c)

Figure 1: (a) Input. (b) Guo et al. (c) Ours.

(a) (b) (c)

Figure 2: (a) Input. (b) Egiazarian et al. (c) Ours.

from the raster image and stroke vectorization to convert the
identified strokes into the vectorized curve form. The exist-
ing methods generally tackle the above two challenges with
a two-step approach, i.e., first identifying the strokes and
then converting to the vector form. This highly limits the
quality of stroke segmentation results without vector guid-
ance. In particular, one stream of existing methods attempts
to directly identify complete strokes via junction analysis
(Guo et al. 2019), local neighborhood similarity (Kim et al.
2018), or region detection (Inoue and Yamasaki 2019), but
these methods generally fail to separate strokes that locally
similar and lead to over-grouped strokes (Fig. 1(b)). Another
stream of methods first identifies smooth stroke segments
and then connects the stroke segments into strokes based
on local properties, such as proximity and continuity (Bess-
meltsev and Solomon 2019; Egiazarian et al. 2020; Noris
et al. 2013; Stanko et al. 2020; Mo et al. 2021). However,
the quality of stroke connection generally cannot be guaran-
teed, leading to obvious broken stroke segments (Fig. 2(b)).

Different from the existing methods that use two-step
approaches, in this paper, we propose an end-to-end vec-

torization framework which directly outputs the vectorized
stroke primitives from a raster line drawing, without us-
ing any post-processing or third-party tool for generating
vector primitives. The key of our method is the integra-
tion of encoder-decoder-vectorizer models that can automat-
ically generate all strokes in vector format and it allows our
method to perform stroke tracing like a human does in an au-
tomatic stroke-by-stroke way. The encoder encodes the input
line drawing into a list of stroke features whether each fea-
ture vector corresponds to a stroke. We explicitly encode the
endpoint information in the stroke features so that the stroke
features can be sorted and provides better hints for decoding
and vectorization. The decoder decodes the stroke features
into a raster reconstruction which provides supervision in
raster form. The vectorizer decodes the stroke feature into
vectorized strokes and provides supervision in vector form.
With the multi-model loss in both vector and raster forms,
we are able to vectorize the raster line drawing with high
quality and fidelity.

We conduct comprehensive evaluations and ablation stud-
ies to validate the effectiveness of our method. Qualitative
and quantitative evaluations show that our method achieves
state of the art performance. The major contributions of our
method can be concluded as follows:
• We propose an end-to-end vectorization method which

directly generates vectorized stroke primitives from
raster line drawing in one step.

• We propose a novel feature representation that encodes a
line drawing into a sequence of sorted stroke features.

• We propose a multi-modal supervision that supervises
our model in both raster and vector forms to achieve vec-
torization quality and fidelity.

Related Work
Line-Drawing Vectorization
Line-drawing vectorization aims to convert raster graphics
into vector representations for simplification, compression,
or resolution-free rendering purposes. Existing vectoriza-
tion methods can be roughly classified into two branches:
optimization-based and learning-based methods.

The optimization-based methods have been widely stud-
ied and are under active developments (Noris et al. 2013;
Bessmeltsev and Solomon 2019; Stanko et al. 2020). These
methods usually regard vectorization as an optimization pro-
cess and attempt to minimize the cost of topology misalign-
ment. However, these methods usually suffer from low com-
putational efficiency and take a very long time to finish a
single image. Recently, several learning-based solutions are
proposed to tackle some subproblems in the vectorization
pipeline with neural networks. These methods focus more
on the problem and leverage the neural gradient descent to
achieve a stroke segmentation or spline curve fitting in an
automatic data-driven fashion. As a result, these methods
are much faster in terms of vectorization inference. Among
these methods, Kim et al. combine CNN and graph-cut algo-
rithms to semantically segment the raster image into a set of
paths. Inoue and Yamasaki formulate the line drawing vec-
torization as an instance segmentation problem and extend

Mask R-CNN (He et al. 2020) for stroke extraction. Fur-
thermore, Guo et al. takes one more step by processing the
raster line drawing in a topology-aware manner. They use
a CNN to identify the junctions and reconstruct the topol-
ogy for each junction in pixel level. Afterward, they split
the line drawing into individual curves and achieves vector-
ization by a least-square fitting. Here, we shall summarize
the above methods as pixel-based solutions. These solutions
extract strokes in the first place and implicitly achieves the
vectorization as a side product with third-party tools such as
Potrace (Selinger 2019). Therefore, the accumulated error in
the model itself and the tracing algorithm may degrade the
quality of generated primitives.

On the other hand, Gao et al., Egiazarian et al., and
Mo et al. attempted to achieve direct vectorization with-
out the intermediate step of stroke analysis or segmenta-
tion. To achieve so, Gao et al. use a hierarchical recurrent
neural network to reconstruct the parametric spline curves
and surfaces from raster images. Egiazarian et al. use a
Transformer-based neural network to estimate the vector
primitives from rasterized technical line drawings and car-
toon line drawings. Mo et al. use a recurrent neural network
supervised by a differentiable rasterization module (Li et al.
2020) to generate lines sequentially. Both (Gao et al. 2019),
(Egiazarian et al. 2020), and (Mo et al. 2021) rely on the
supervision on curve primitives, i.e.primitive-level supervi-
sion. However, these methods supervise the primitives of
strokes independently without considering the semantics of
the strokes, e.g., how each stroke contributes to the overall
line drawing. As a result, such pure primitive level super-
vision may suffer from misalignment from raster lines and
discontinuity between primitive segments.

Our work follows the idea of both streams of learning-
based methods and leverages a combination of pixel-level
supervision and primitive-level supervision: we implicitly
segment each stroke from the raster input by pixel-level re-
construction errors and explicitly generate vector outputs by
supervision on control points for each primitive.

Transformer
The Transformer architecture was first introduced by
Vaswani et al. in 2017 as a new attention-based model archi-
tecture for machine translation tasks. It soon becomes the de
facto standard building block for natural language process-
ing tasks to now. Due to its superior representation power
and affinity to sequential representations, it is not surpris-
ing to observe the wide usage of Transformers in computer
vision tasks (Khan et al. 2021).

One noticeable work in directly applying Transformers
to the vision task is the DETR model (Carion et al. 2020),
which is proposed to detect the bounding boxes and pre-
dict the labels of objects from images in an end-to-end man-
ner. Thanks to the help of the Transformer architecture, the
DETR removes the need for conventional hand-designed
components in object detection tasks and demonstrates im-
proved accuracy and efficiency over other traditional detec-
tors. More recently, Egiazarian et al. use a Transformer-
based neural network to roughly estimate the vector prim-
itives in their technical line drawing vectorization frame-

work. The predicted primitives are then refined by energy
minimization. The results obtained in their two-step solu-
tion usually suffers from the discontinuity between prim-
itive segments and missing semantics. In sharp contrast,
our method bypasses any post-processing optimizations and
can predict the primitives more accurately and directly. Our
method supports direct image-to-vector translation in an
end-to-end manner. Meanwhile, the auto-encoding design
of our method ensures the efficiency and accuracy of our
transcoding pipeline from raster to vector.

Method
Overview
Our proposed framework aims at an end-to-end vectoriza-
tion of raster line drawings. Given a clean raster line drawing
as input, the framework directly outputs a vector representa-
tion of the line drawing. We demonstrate an overview of the
framework in Figure 3. As the figure indicates, the proposed
framework consists of three modules, the Stroke Encoder,
the Stroke Decoder, and the Stroke Vectorizer. Taking a line
drawing image I as input, the Stroke Encoder first identi-
fies the strokes in I and converts the strokes into an ordered
list of stroke features {Fi} in which each feature vector Fi

represents a stroke of the raster input I . After the encoding,
we propose the Stroke Decoder module and the Stroke Vec-
torizer module altogether to solve the stroke vectorization
and the stroke reconstruction tasks simultaneously. Specifi-
cally, the Stroke Vectorizer takes the image I and the stroke
feature Fi as input and estimates the control points {θj}i
for the stroke Si. The Stroke Decoder decodes and recon-
structs each stroke feature Fi and into raster stroke RSi. Our
framework relies on an auto-encoding scheme for a compact
stroke representation. Each stroke Si is encoded into a stroke
feature Fi by minimizing the reconstruction errors. More-
over, the framework requires no tedious junction recogni-
tion nor any post-processing stages, which further simplifies
the overall procedure of line drawing vectorization. We shall
discuss the detailed design of each module in the following
sections.

Stroke Encoder
First of all, we design the Stroke Encoder module to iden-
tify each stroke in the raster line drawing image input. The
Stroke Encoder estimates the features of each stroke and out-
puts a list of feature vectors corresponding to the strokes.
The Stroke Encoder features the Transformer architecture
with a parallel encoding mechanism (Carion et al. 2020) in
order to efficiently handle each stroke. Moreover, the Stroke
Encoder is built to allow the processing of variable numbers
of strokes.

To be specific, the module first encode the input raster
image I ∈ [0, 1]

W×H with a ResNet-based (He et al. 2016)
feature extractor Xf = ResNet(I), and then decode Xf with
a sequence of ndec Transformer blocks (Vaswani et al. 2017)
to form our final list of feature embeddings {Fi} as:

TransEmb = Transformer(PosEmb1d, Xf), (1)

{Fi} = MLP(TransEmb) (2)

where PosEmb denotes the positional encoding in the
Transformer architecture and TransEmb denotes the di-
rect output embeddings from the transformer. The maximum
number of strokes is set with the size of the input positional
embedding PosEmb1d ∈ Rnstroke×dTrans .

Comparing to existing solutions that directly use the
Transformer outputs TransEmb as the intermediate feature
representation for downstream tasks such as object detec-
tion and object classification (Khan et al. 2021), we prefer
to construct our intermediate feature list {Fi} with a cer-
tain semantic meaning of the correlated stroke Si. Based
on our observation on the QuickDraw (Ha and Eck 2017)
and the TU Berlin Sketch dataset (Eitz, Hays, and Alexa
2012) that the artists usually finish a line drawing stroke by
stroke, we choose to explicitly constrain the encoded fea-
ture Fi to contain the starting point and an ending point
of the stroke Si. With the supervision of the endpoints, the
model can better learn the morphology of each stroke in the
line drawing. As a result, we first transform the TransEmb
by fully-connected network MLP and supervise the Trans-
former and the MLP to output the Fi as a sequence of
{P0, P1, emb, p}i ∈ RdF=5+demb , where (P0, P1) repre-
sents endpoint coordinates of the stroke Si. The latter emb
in Fi is a transformed latent feature embedding of the stroke
Si to contain the essential information of the stroke for the
following reconstruction and vectorization. Finally, p indi-
cates the confidence value for the current estimation. If p is
lower than 0.5, we shall simply remove Fi in our final list of
feature embedding.

Feature Loss. We employ a feature loss to estimate the
multi-task problem of primitive classification and control
point supervision. Here we use a similar design of (Carlier
et al. 2020; Egiazarian et al. 2020) to construct the feature
loss as a composition of binary cross-entropy of the confi-
dence and a weighted sum of L1 and L2 deviations of stroke
endpoints as:

Le

(
Pi, P̂i

)
= (1− λe)

∥∥∥Pi − P̂i

∥∥∥2
2
+ λe

∥∥∥Pi − P̂i

∥∥∥
1

(3)

Lconfid (pi, p̂i) = −p̂i log pi − (1− p̂i) log(1− pi) (4)

LF =
1

nstroke

nstroke∑
i=1

(βLe + Lconfid) , (5)

where β = min (ImgWidth, ImgHeight), λe = 0.5.
The target confidence values pi are all ones, with zeros

in the end indicating invalid placeholder strokes (Egiazar-
ian et al. 2020). Since this loss function is not permutation-
invariant with regard to the ordering of strokes and their end-
points, we sort the endpoints in each ground-truth strokes
and the target stroke feature list by their endpoints lexico-
graphically.

Stroke Decoder
In the previous step, we encode the strokes of the input im-
age I to a list of features Fi with the Stroke Encoder Module.
However, the Stroke Encoder only constrains the endpoint
location and leaves the feature embedding emb of Fi uncon-
strained. To constrain the emb of each feature entry Fi to

Stroke Decoder

Shared Weight

Stroke Vectorizer

Input

Input

Vectorized Storke

UNet

Reconstruction
Loss

Primtive
Loss

Feature
Loss

Transformer

UNet

Input

Stroke Features

Stroke Encoder

ResNet Transformer

Raster Stroke

ResNet

Figure 3: Overview. Given raster image I , the Stroke Encoder identifies strokes and encodes them into stroke features {Fi}; the
Stroke Decoder decodes stroke feature Fi into raster stroke RSi; the Stroke Vectorizer generates the control points for vector
stroke V Si based on the stroke feature Fi and the input image I .

be informative about the stroke Si, we introduce the Stroke
Decoder module. The module processes strokes individually
and enforces accurate reconstruction of the raster represen-
tation of Si from the emb. With this pixel-level stroke su-
pervision, we ensure the stroke feature Fi contains neces-
sary information and further benefits the following Stroke
Vectorizer Module to give more accurate results.

To achieve so, we first propose a U-Net based backbone
network (Ronneberger, Fischer, and Brox 2015) denoted as
UNet to give a feature transformation of encoded stroke fea-
ture Fi of stroke Si, conditioned by the input image I , as
Xs = UNet(Fi, I). The backbone network takes I as input.
Fi is concatenated in the innermost layer of the backbone
network. To improve the model performance, a mesh grid
composed of the coordinates of each pixel (Liu et al. 2018)
is also passed into the backbone network UNet. The trans-
formed feature Xs is afterward fed into a ResNet-based (He
et al. 2016) convolutional neural network to be decoded to
reconstruct the raster stroke RSi. After all, we combine the
U-Net backbone network and the ResNet-based image re-
constructor to form the complete Stroke Encoder module.

Stroke Reconstruction Loss. As discussed above, the
Stroke Decoder focuses on the reconstruction quality of the
raster strokes RSi to ensure the stroke feature Fi (especially
the emb portion) to be meaningful. Thus, we use a combi-
nation of L1 and L2 loss to calculate the pixel-wise differ-
ence between the ground-truth stroke GT Si and the recon-
structed raster stroke RSi. We hence formulate the stroke
reconstruction loss as below:

LR (Sgt, RS) = (1−λr) ∥Sgt −RS∥22 +λr ∥Sgt −RS∥1 (6)

where λr = 0.3.

Stroke Vectorizer
Given an extracted feature representation Fi of each stroke,
we formulate the stroke vectorization as an auto-regressive
prediction problem, i.e., given feature Fi and a starting
point, we progressively output one segment of the vector
stroke primitives at a time, until all primitives of the strokes
are all outputted. Significantly, the output of the n-th prim-
itive is both conditioned by the feature Fi and all n − 1
previously outputted strokes. This auto-regressive prediction
process imitates the actual pen-ink tracing of human artists,
in which new lines or curves (Beziér curve in our case)
are drawn continuously along the original stroke. Moreover,
the auto-regressive manner always outputs sequentially con-
nected and naturally ordered vector primitives so as to im-
prove the accuracy and the representation efficiency of the
vectorization.

Here, we propose the Stroke Vectorizer module to solve
this auto-regressive tracing problem. The Vectorizer starts
with the same feature transformation Xs = UNet(Fi, I) in
the Stroke Decoder. After that, we realize the auto-regressive
tracing of the stroke with a Transformer network (Vaswani
et al. 2017). The transformer network reads Xs and predicts
a list of Beziér curve primitives lst as the final output for the
i-th stroke.

For a single stroke, we start at the endpoint (xs, ys) that
is of closer coordinate location to 0. For simplicity, we use a
partial format curvet = (xc1, yc1, xc2, yc2, xe, ye)t to rep-
resent a Beziér curve instead. In this format, we can ensure
the stroke vector continuity because the starting point of
curvet is also the ending point of curvet−1. To bootstrap the
auto-regressive prediction, we manually specify the initial
curve primitive as curve0 = (xs, ys, xs, ys, xs, ys). Given

Algorithm 1: Stroke Vectorizer
Input: curve0, feature map Xs

Result: lst
Init lst0 = {curve0};
Init eos = false;
while not eos do

curvet, eos = Transformer(lstt−1, Xs) ;
lstt = lstt−1 + curvet

end

the transformed feature Xs and the initial set of curves lst0,
we describe the actual tracing algorithm with Transformers
in Algorithm 1. Especially, we follow the original Trans-
former design to use a multi-Layer perceptron for predicting
the next primitive curvet and the End of Sequence symbol
eos. The eos symbol indicates no remaining Beziér primi-
tives to be generated.

Primitive Loss. Despite the auto-regressive mechanism
of the Stroke Vectorizer, we can simply train it with a multi-
task primitive Loss. The primitive loss is similar to the Fea-
ture Loss in Eq. 5 except the primitives are ordered naturally.
The loss consists of a binary entropy loss for eos and an
affine combination of L1 and L2 loss for the control points
of each curve:

Leos (ei, êi) = −êi log ei − (1− êi) log(1− ei) (7)

Lc

(
θi, θ̂i

)
= (1− λc)

∥∥∥θi − θ̂i

∥∥∥2
2
+ λc

∥∥∥θi − θ̂i

∥∥∥
1

(8)

LP =
1

nprimitive

nprimitive∑
i=1

(βLc + Leos) (9)

where β = min (ImgWidth, ImgHeight), λc = 0.75.

Overall Loss Function
In summary, our multi-task training loss function is made
up of three components: (1) a feature loss LF for stroke fea-
ture estimation, (2) a raster stroke reconstruction loss LR for
pixel-level supervision, and (3) a primitives prediction loss
LP that enables vectorization. The total loss is formulated
as follows:

Ltotal = LF +
1

nstroke
(λRLR + λPLP) (10)

where nstroke is the number of the strokes in the input im-
age, λR and λP are 0.1 and 6.0 respectively.

Experiments
Implementation Details
Dataset Our framework is able to process images with ar-
bitrary resolution. Due to the hardware memory limit and
the efficiency considerations, we train our network with a
relatively lower resolution. In the evaluation phase, we al-
low higher-resolution inputs. We use a portion (excluding
the BACKPACK and the BICYCLE classes for validation)
of QuickDraw (Ha and Eck 2017) and the TU Berlin (Eitz,

Hays, and Alexa 2012) dataset for the framework training.
We render the vector data as raster images of varying reso-
lutions from 64 px to 256 px with a step size of 32 px.

To evaluate the performance of our framework, we per-
form both quantitative and qualitative comparisons. We use
1150 images from the testing dataset provided by (Kim et al.
2018) (selected images from the BACKPACK and the BI-
CYCLE classes on the QuickDraw dataset) for quantita-
tive evaluation. For the qualitative comparison, we first ran-
domly sample drawings in the validation dataset. Moreover,
to validate the robustness of our model, we also test with sev-
eral line drawings in previous works including (Egiazarian
et al. 2020; Guo et al. 2019) in our qualitative comparison.

Implementation We implement our framework in Py-
Torch following a similar Transformer design as (Carion
et al. 2020; Egiazarian et al. 2020) with 8 decoder layers
for Stroke Encoder and 6 encoder/decoder layers for Stroke
Vectorizer. Both of the Transformers use 8 attention heads.
For Stroke Encoder, the 1D sinusoidal positional encoding is
used for parallel decoding (Carion et al. 2020). We use three
independent Adam optimizers for Stroke Encoder, Stroke
Decoder, and Stroke Vectorizer, all with an initial learning
rate of 0.0001. We trained our model using 4 NVIDIA Titan
V GPUs with automatic mixed precision, gradient accumu-
lation trick, and gradient checkpointing (Chen et al. 2016)
through all our experiments.

More technical information, such as the detailed network
architecture and the interconnect between each component,
will be included in the supplementary material.

Training Our framework is sensitive to initialization due
to unbalanced learning loads between the Stroke Extractor
and the Stroke Decoder/Vectorizer (as an input image can
contain several strokes). The joint optimization of all three
modules with randomly initialized weights might not con-
verge. To ensure the training stability of our framework, we
adopted a bootstrap training scheme. We first randomly pick
5,000 raster input training images as a bootstrap collection
{Ii}bs. We assign a learnable embedding êmbi,j for each
stroke Si,j belonging to the bootstrap collection. We then
jointly optimize the êmbi,j and the Stroke Decoder with
the ground truth endpoints Pi,j and raster stroke RSi,j un-
til convergence. Stroke Encoder is then directly supervised
with (Ii, {Pi,j}, {êmbi,j}). Stroke Vectorizer is also trained
with the êmbi,j and primitives of the related vector stroke. In
other words, we leverage the Stroke Decoder as a gradient-
based solver for embedding probe. After the bootstrap stage,
we jointly train the whole framework with all training data
until convergence.

Evaluations
Visual Comparisons Figure 4 shows visual comparisons
between our framework and the state-of-the-art methods on
low-resolution input. The predicted strokes are visualized
with distinct colors. The results of (Kim et al.), (Inoue and
Yamasaki), and (Mo et al.) contain both over-grouped and
unconnected strokes. (Egiazarian et al.) generates massive

Input Kim et al. Inoue et al. Guo et al. Egiazarian et al. Mo et al. Ours

Figure 4: Vectorization results generated by different methods. The resolution of all input images is 128× 128.

Input Guo et al. Inoue and Yamasaki Egiazarian et al. Mo et al. Ours

Figure 5: Vectorization results on high-resolution line drawings. The resolution of all input images is 1024× 1024.

unconnected strokes. Both (Guo et al.) and our method show
visually pleasant results.

Figure 5 shows visual comparisons on high-resolution
input. We exclude (Kim et al. 2018) from this compar-
ison, since its optimization process takes more than one
day to handle a high-resolution input. Both (Inoue and Ya-
masaki) and (Egiazarian et al.) generate massive uncon-
nected strokes. (Mo et al.) also generates many unconnected
strokes and misses some details. (Guo et al.) contains several

over-grouped strokes in the final output. Though our method
also degrades a little bit for high-resolution input, we can
still obtain satisfying results for all examples.

Quantitative Comparisons Since there are no direct eval-
uation metrics for the estimated primitives, we can only
measure the pixel-level similarity between the input line
drawing and the rasterized output using five similarity met-
rics, i.e., Structural similarity index (SSIM), Intersection-

SSIM ↑ IoU ↑ HD ↓ CD ↓ EMD ↓
Kim et al. 0.9764 56.5% 50.6 0.0298 0.516

Inoue and Yamasaki 0.9758 54.8% 49.8 0.0413 0.575
Guo et al. 0.9788 60.6% 50.9 0.0276 0.444

Egiazarian et al. 0.8914 42.1% 51.2 0.778 2.108
Mo et al. 0.9505 51.7% 51.6 0.0286 0.445

Ours 0.9785 58.3% 50.3 0.0143 0.403

Table 1: Quantitative evaluation of learning-based vectorization methods. The best and second best results are in bold and
underline font respectively.

Full W/o Pixel W/o Primitive
SSIM↑ 0.9785 0.9456 0.9634
IoU↑ 58.3% 41.0% 49.7%
HD↓ 50.3 51.3 50.7
CD↓ 0.0143 0.0872 0.0556
EMD↓ 0.403 0.921 0.601

Table 2: Ablation study on different loss terms.

(a) (b) (c) (d)

Figure 6: Ablation study of our framework. (a) Input. (b)
Full supervision. (c) W/o pixel-level supervision. (d) W/o
primitive-level supervision.

over-Union (IoU), Hausdorff distance (HD), Chamfer dis-
tance (CD), and Earth mover’s distance (EMD). Here, while
IoU can reflect deviations in two rasterized vector graph-
ics, it cannot capture the spatial deviations between raster
shapes, e.g. two similar shapes with minor offsets from each
other. Thus, we introduce distance metrics for shape eval-
uation. We treat the rasterized images as point clouds and
calculate the distance metrics on these point clouds.

The statistics are shown in Table 1. We want to empha-
size that since the evaluations are performed on pixels in-
stead of primitives, the similarity metrics can only measure
the fidelity of the generated vector graphics, but fail to cap-
ture the overgrouping or undergrouping of strokes. In terms
of fidelity, our model significantly outperforms (Egiazarian
et al.), slightly outperforms (Inoue and Yamasaki), (Kim
et al.) and (Mo et al.), and shows comparable performance
with (Guo et al.).

Ablation Study To verify the effectiveness of our frame-
work design, we conduct ablation studies on different loss
terms. The evaluation results are shown in Table 2.

Feature Supervision. We explicitly supervise the stroke
endpoints and stroke confidence of the stroke feature list in
Stroke Encoder. We found this supervision is critical for our

whole framework. We trained the whole framework without
feature supervision and found it does not converge.

Pixel-Level Supervision. As shown in Figure 6 (c), the
framework trained without pixel-level supervision generates
low-quality vector outputs. The primitives show large devia-
tions and are misaligned from their raster counterparts. The
quantitative metrics are worst compared with others.

Primitive-Level Supervision. Without the primitive su-
pervision, our model is incapable of producing the vector-
ization results. Therefore, We trace the reconstructed raster
strokes with Potrace, and use the traced results for evalua-
tion. As shown in Figure 6 (d), the strokes are broken apart,
which leads to visually-unpleasing results.

Limitation and Discussion

Currently, our framework only works for clean line drawing.
It cannot process messy line drawings and rough sketches.
We require an explicit simplification prior to our framework
for these kinds of inputs. On the other hand, our framework
use Transformer to understand and translate the sequential
stroke information. Due to the extensive self-attention com-
putation, the computational cost of our framework is rela-
tively higher. As a result, our model cannot directly process
high-resolution images on current commodity GPUs (we in-
stead evaluate high-resolution images on CPU). We may in-
vestigate the possibilities to include efficient attention mech-
anisms (Child et al. 2019; Niculae and Blondel 2017) for
future improvements.

Conclusions
We proposed an end-to-end vectorization framework to cope
with the challenging free-form line drawing vectorization
task in this work. Unlike existing solutions, our method
directly outputs vector representation from line drawing
strokes without extra post-processing or tracing steps. The
major advantage of our framework comes firstly from the
auto-encoding scheme of the Stroke Encoder and the Stroke
Decoder to enrich the representation ability of the stroke
vectors. Moreover, with the auto-regressive manner of the
stroke vectorizer, we enable end-to-end outputs from raster
to vector stroke primitives. Both qualitative and quantitative
supports that our framework achieves state-of-the-art perfor-
mance among existing learning-based vectorization meth-
ods.

Acknowledgements
This project is supported by CUHK Direct Grant for Re-
search (Project No. 4055152).

References
Bessmeltsev, M.; and Solomon, J. 2019. Vectorization of
Line Drawings via Polyvector Fields. ACM Trans. Graph.,
38(1).
Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
A.; and Zagoruyko, S. 2020. End-to-End Object Detection
with Transformers. In Computer Vision – ECCV 2020, Lec-
ture Notes in Computer Science, 213–229. Cham: Springer
International Publishing. ISBN 9783030584528.
Carlier, A.; Danelljan, M.; Alahi, A.; and Timofte, R. 2020.
DeepSVG: A Hierarchical Generative Network for Vector
Graphics Animation. In Advances in Neural Information
Processing Systems, volume 33, 16351–16361. Curran As-
sociates, Inc.
Chen, T.; Xu, B.; Zhang, C.; and Guestrin, C. 2016. Training
Deep Nets with Sublinear Memory Cost. arXiv:1604.06174.
Child, R.; Gray, S.; Radford, A.; and Sutskever, I. 2019.
Generating Long Sequences with Sparse Transformers.
arXiv:1904.10509.
Egiazarian, V.; Voynov, O.; Artemov, A.; Volkhonskiy, D.;
Safin, A.; Taktasheva, M.; Zorin, D.; and Burnaev, E. 2020.
Deep Vectorization of Technical Drawings. In Computer
Vision – ECCV 2020, Lecture Notes in Computer Science,
582–598. Cham: Springer International Publishing. ISBN
9783030586010.
Eitz, M.; Hays, J.; and Alexa, M. 2012. How Do Humans
Sketch Objects? ACM Trans. Graph., 31(4).
Gao, J.; Tang, C.; Ganapathi-Subramanian, V.; Huang,
J.; Su, H.; and Guibas, L. J. 2019. DeepSpline: Data-
Driven Reconstruction of Parametric Curves and Surfaces.
arXiv:1901.03781.
Guo, Y.; Zhang, Z.; Han, C.; Hu, W.; Li, C.; and Wong, T.-
T. 2019. Deep Line Drawing Vectorization via Line Sub-
division and Topology Reconstruction. Computer Graphics
Forum, 38(7): 81–90.
Ha, D.; and Eck, D. 2017. A Neural Representation of
Sketch Drawings. arXiv:1704.03477.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2020.
Mask R-CNN. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(2): 386–397.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778. Los Alamitos, CA, USA: IEEE Computer Society.
Inoue, N.; and Yamasaki, T. 2019. Fast Instance Segmenta-
tion for Line Drawing Vectorization. In 2019 IEEE Fifth In-
ternational Conference on Multimedia Big Data (BigMM),
262–265.
Khan, S.; Naseer, M.; Hayat, M.; Zamir, S. W.; Khan, F. S.;
and Shah, M. 2021. Transformers in Vision: A Survey.
arXiv:2101.01169.

Kim, B.; Wang, O.; Öztireli, A. C.; and Gross, M. 2018. Se-
mantic Segmentation for Line Drawing Vectorization Using
Neural Networks. Computer Graphics Forum, 37(2): 329–
338.
Li, T.-M.; Lukáč, M.; Gharbi, M.; and Ragan-Kelley, J.
2020. Differentiable Vector Graphics Rasterization for Edit-
ing and Learning. ACM Trans. Graph., 39(6).
Liu, R.; Lehman, J.; Molino, P.; Petroski Such, F.; Frank, E.;
Sergeev, A.; and Yosinski, J. 2018. An Intriguing Failing
of Convolutional Neural Networks and the CoordConv So-
lution. In Advances in Neural Information Processing Sys-
tems.
Mo, H.; Simo-Serra, E.; Gao, C.; Zou, C.; and Wang, R.
2021. General Virtual Sketching Framework for Vector Line
Art. ACM Trans. Graph., 40(4).
Niculae, V.; and Blondel, M. 2017. A Regularized Frame-
work for Sparse and Structured Neural Attention. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, 3340–3350.
Red Hook, NY, USA: Curran Associates Inc. ISBN
9781510860964.
Noris, G.; Hornung, A.; Sumner, R. W.; Simmons, M.; and
Gross, M. 2013. Topology-Driven Vectorization of Clean
Line Drawings. ACM Trans. Graph., 32(1).
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, Lecture Notes in Computer
Science, 234–241. Cham: Springer International Publishing.
ISBN 9783319245744.
Selinger, P. 2019. Potrace. http://potrace.sourceforge.net.
Accessed: 2021-09-01.
Stanko, T.; Bessmeltsev, M.; Bommes, D.; and Bousseau, A.
2020. Integer-Grid Sketch Simplification and Vectorization.
Computer Graphics Forum (Proceedings of the Eurograph-
ics Symposium on Geometry Processing), 39(5): 149–161.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017. At-
tention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

