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Abstract —Compared to still image editing, content-based video editing faces the additional challenges of maintaining the spatio-
temporal consistency with respect to geometry. This brings up difficulties of seamlessly modifying video content, for instance,
inserting or removing an object. In this paper, we present a new video editing system for creating spatio-temporally consistent and
visually appealing re-filming effects. Unlike the typical filming practice, our system requires no labor-intensive construction of 3D
models/surfaces mimicking the real scene. Instead, it is based on an unsupervised inference of view-dependent depth maps for all
video frames. We provide interactive tools requiring only a small amount of user input to perform elementary video content editing,
such as separating video layers, completing background scene, and extracting moving objects. These tools can be utilized to produce
a variety of visual effects in our system, including but not limited to video composition, “predator” effect, bullet-time, depth-of-field, and
fog synthesis. Some of the effects can be achieved in real-time.

Index Terms —video editing, re-filming, depth estimation, composition, background completion, and layer separation.

✦

1 INTRODUCTION

T HE wide availability of portable video capturing devices
allows home-users to access the image/video contents

in daily life. This can be evidenced by the fact that more
and more home videos are shared and broadcasted over
internet. Nevertheless, compared to the advancement of the
image editing algorithms (e.g., inpainting, segmentation, and
matting), the development of the content-based video editing
is still left far behind in terms of the diversity, practicability,
and user-friendliness. A major difficulty comes from the multi-
frame nature of a video that requires high temporal consistency
over frames. Unfortunately, such consistency is widely known
as challenging to maintain due to the difficulty in acquiring
the accurate geometry.

In the film industry, the typical solution to creating a
visually plausible video editing result is to use specially
designed equipments and set up a user-controlled environment.
The typical configurations include blue-screen background
and motion capture. To enable the modification of video
content, 3D models are usually constructed, rendered with
carefully tuned lighting, and overlaid onto the video. All these
procedures involve the manual intervention by the skilled pro-
fessionals. Attempts have been made recently in [1] to design
a more user-friendly video editing system for interactively
constructing 3D models. However, creating a 3D model with
sufficient geometry details, e.g. a tree with many leaves, is
still intractable, as a large number of fine objects need to be
modeled from sparse feature points.

In this paper, we propose a new system for editing casual
videos without explicitly reconstructing 3D geometry models.
The input single or multiple video clips are allowed to be taken
by a hand-held moving camera. Our system contributes in
the following respective areas. We describe an efficient level-
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expansion algorithm to increase the precision of the depth
estimates obtained from the algorithm of Zhang et al. [2]. The
output from this step is a set of temporally-consistent dense
depth maps that are accurate enough to maintain sharp object
boundaries. Based on these depth estimates, we introduce a
few elementary video editing tools, allowing the user to locally
modify the object color and structures.

The first tool is for inferring the missing depth and color of
the background pixels through an information propagation pro-
cess over the video frames. Then we introduce a robust moving
object (sprite) extraction method taking account of both the
depth and color information. The depth of the extracted sprite
is also inferred and represented by a 3D plane. Finally, we
describe a method to naturally separate the static background
into fine layers. With these tools, a spectrum of special effects
such as depth-of-field, fog synthesis, view interpolation (e.g.,
bullet-time effect), “predator” effect (camouflaging effect), and
video composition, can be created. Figure 1 shows a set of
these re-filming effect examples. Our semi-automatic depth
estimation in the system makes visual effect generation notin
a frame-by-frame manner, and thus reduces the possible user
interactions. It benefits not only professionals but also novice
home-users to produce visually appealing effects without
requiring significant cost and manpower.

2 RELATED WORK

In video editing, several interactive image/video segmenta-
tion/matting techniques [3], [4], [5], [6], [7], [8], [9], [10],
[11] have been developed. Most of them only use the color
information or require special camera configurations. In video
matching, Sand and Teller [12] proposed to produce spatio-
temporal alignment between two videos following spatially
similar camera trajectories. The 2D motion information is used
in this method to align video frames. This method is not



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

"Predator" Effect View InterpolationInput video

Composition Depth-of-field Fog Synthesis

Re-filming

Re-filming

...

...

...

...

Fig. 1. The left column shows the snapshots of the input videos. The image frames on the right show a set of exemplar
re-filming effects from our system.
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Fig. 2. The overview of our system.

applicable to a single video input. Given two video sequences
of different scenes acquired with moving cameras, Xiao et
al. [13] proposed seamlessly transferring a static 3D object
from one sequence to the other. However, they did not discuss
the problem of registering moving objects.

Recovering the camera motion is essential for video editing.
This can be achieved using the structure-from-motion (SFM)
techniques. The state-of-the-art SFM algorithms can automati-
cally recover sparse 3D points and camera position for a large
class of camera motions [14], [15], [16]. Our system employs
the SFM method of Zhang et al. [16]. For content-based video
editing, using SFM to compute a sparse set of 3D points is not
sufficient as it does not resolve the geometrical relation ofthe
scene. Hengel et al. [1] introduced an interactive approachto
build 3D models from a video. However, for complex natural
scenes (e.g. a tree with many leaves), such an interactive
reconstruction becomes labor-intensive and may not even be
tractable.

Given an input of multiple images, dense depth maps can
be estimated by multi-view stereo algorithms [17], [18], [19],
[20], [21]. However, these methods compute the depth map
for each frame independently and may not preserve temporal
consistency. Kang and Szeliski [22] addressed this problemby
simultaneously optimizing a set of depth maps at multiple key-

frames, by adding a temporal smoothness term. Most recently,
Zhang et al. [2] proposed a bundle optimization method to
reconstruct temporally consistent video depth maps. In our
system, we improve this method by dramatically increasing
the depth precision without introducing much computational
overhead. Bhat et al. [23] introduced an image-video frame-
work for automatically enhancing videos using several high-
resolution photographs. This method is also limited to only
handling the videos of static scenes.

3 CREATING DEPTH VIDEO

Figure 2 illustrates an overview of our system. The input can
be a single or multiple video clips. Our system automatically
recovers the camera parameters and the complementing depth
video. With these view-dependent per-frame depth maps, we
are able to interactively perform sprite extraction, layersepa-
ration, and background completion. Finally, in the re-filming
module, various visual effects can be created using these
extracted sprites, separated layers, and backgrounds, without
explicit 3D model/surface reconstruction.

We employ a multi-view stereo algorithm to compute the
depth map for each frame, in order to generate a high-quality
depth video. We improve the method of Zhang et al. [2]
which includes a bundle optimization and incorporates the
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Fig. 3. Depth-level expansion. (a) One frame from the input video. (b) The estimated disparity map with 51 disparity
levels in a single BP pass. The banding artifact due to aliasing is noticeable. (c) The estimated disparity map with 201
disparity levels in a single BP pass. (d) The estimated disparity map with our two-pass BP. The results of (c) and (d)
are quite comparable in quality.

geometric coherence constraint to overcome the vulnerability
of the depth estimation to image noises, occlusion, and other
problems. Our improvement lies in a depth-level expansion
algorithm to increase the depth precision without introducing
much computational overhead. The recovered depth maps are
not only temporally consistent but also accurate to retain
the sharp discontinuous object boundaries. Such quality is
especially important for generating visually plausible re-filmed
videos. In what follows, we first briefly describe the bundle
optimization algorithm.

3.1 Bundle Optimization

Consider a video sequence withn frames,Î = {It |t = 1, ...,n},
the objective of depth recovery is to obtain a set of disparity
maps D̂ = {Dt |t = 1, ...,n}. It(x) represents the color (or
intensity) of pixel x in It . It is a 3-vector in a color image
or a scalar in a grayscale image. The disparity valueDt(x)
is defined as the inverse of depthzx, i.e., Dt(x) = 1/zx. For
simplicity’s sake, the terms “depth” and “disparity” are used
interchangeably.

The depth video estimation is based on a bundle optimiza-
tion model with the energy defined as

E(D̂; Î) =
n

∑
t=1

(Ed(Dt ; Î, D̂\Dt)+Es(Dt)), (1)

where the data termEd measures how well the disparitŷD
fits the given sequencêI, and the smoothness termEs encodes
the spatial smoothness. We minimizeE(D̂; Î) to estimate the
video depth maps.

The data termEd is defined as

Ed(Dt ; Î, D̂\Dt) = ∑
x

1−u(x) ·L(x,Dt(x)), (2)

where the normalization factor is written as

u(x) = 1/max
Dt (x)

L(x,Dt(x)).

L(x,Dt(x)) is the disparity likelihood term proposed in [2],
counting in both the color and geometry constraints.

The smoothness term is defined as

Es(Dt) = ∑
x

∑
y∈N(xt )

λ ·min{|Dt(x)−Dt(y)|,η}, (3)

where N(x) denotes the set of neighbors of pixelxt , λ is
a smoothness weight, andη determines the upper limit of
the cost. In all our experiments,λ = 5/(dmax− dmin), η =
0.05· (dmax−dmin), as [dmin,dmax] is the range of disparity.

To minimize E(D̂; Î) and accordingly estimate the opti-
mal disparity values, we uniformly quantize the disparity
into discrete values. We use the method proposed in [2] to
first initialize the disparity maps, and then refine them by
minimizing the energy in (1) using an efficient loopy belief
propagation [24]. Each pass starts from frame 1. To reduce
the computational complexity, when disparity mapt is being
refined, the depth estimates of all other frames are fixed. In
this case, (1) is simplified to

Et(Dt) = Ed(Dt)+Es(Dt), (4)

as all Ed(Dt ′) and Es(Dt ′), where t ′ 6= t, have the fixed
energy. The data termEd(Dt) associates framet with about
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Fig. 4. Depth level expansion. The top row shows that we
first estimate a coarse-level disparity value d0

x between
dmin and dmax. The bottom row shows that the refined
disparity d1

x is obtained by splitting a coarse level to many
fine levels around d0

x .

40 neighboring frames in energy computation according to
its definition. Depth maps are sequentially refined until frame
n has been processed. In our experiments, two passes of
optimization on the whole video are usually sufficient.

3.2 Depth-Level Expansion

In the above depth estimation, we use belief propagation (BP)
to minimize the energy in (4). The computational complexity
is linear to the number of labels, i.e., the number of depth
levels. Hence, accurate depth estimation using a large num-
ber of levels implies large memory consumption. Here, we
propose a level expansion method to densify the levels of
depth. It is a coarse-to-fine approach to significantly refine
the inferred depth without introducing expensive computation.
Kang et al. [25] proposed a hierarchical graph cut algorithm
to accelerate the global optimization for multi-view stereo.
The complexity of each level is quadratic to the number of
labels. In contrast, our depth-level expansion is based on a
two-pass BP algorithm, where in each pass the computational
complexity is linear to the number of labels. Another reason
that we choose BP is that the distribution of the data costs
in our bundle optimization model is usually distinctive, which
makes BP converges very quickly (10 iterations are sufficient
in our experiments).

To minimizeEt(Dt) for all t, we first quantize all disparities
into 51 levels, where thekth level

d0
k = dmin +

k
50

· (dmax−dmin), k = 0, ...,50.

Then we apply BP to minimize the energy (4) and refine
the depth maps. We denote the estimated disparity value for
pixel x as d0

x , whered0
x = d0

k . Figure 4 illustrates this idea.
Afterwards, we construct finer disparity levels for pixelx only
in range[d0

k−1,d
0
k+1] except the extremal values atk = 0 and

k = 50. It is done by quantizing the depths in[d0
k−1,d

0
k+1] into

another 21 levels, where the newith level is

d1
i = d0

k +
i

20
· (d0

k+1−d0
k−1), i = 0, ...,20.

The optimization method described in Section 3.1 is then used
again to refine the depth values. Only two passes of BP can
efficiently compute the depth with hundreds of levels.

We demonstrate one of our inferred video depth maps in
Figure 3(d). Readers are also referred to our supplementary

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5. “Cone” example. (a)-(c) The 2th, 4th, and 6th
image of “Cone” sequence; (d)-(f) The initial disparity
maps for (a)-(c) respectively. (g-i) The disparity maps after
bundle optimization. (j-l) The close-ups.

video1 for inspecting the quality of the inferred depth maps.
Compared to the single-pass BP with depth levels of 501,
our two-pass approach consumes only 10% memory space
and runs 7 times faster. The quality of the inferred depths
is comparable. Figure 3 shows a comparison. Due to the
limitation of memory, we are only able to run the one-pass BP
with 201 disparity levels (instead of 501 disparity levels)for
comparison. Figure 3(b) is the result of a single-pass BP with
51 disparity levels. Figure 3(c) shows the result of a single-
pass BP with 201 disparity levels. Figure 3(d) is the result of
our two-pass BP with 201 disparity levels (the first pass with
51 disparity levels and the second pass with 9 disparity levels).
The total number of iterations is 10. There is nearly no visual
difference between (c) and (d), and the average quantitative
difference is 0.00214(dmax−dmin). Only 0.16% of the pixels
are with disparity difference larger than150(dmax−dmin). If our
first-pass BP runs with more labels, the difference could be
further reduced.

3.3 Evaluation with Middlebury Stereo Images

For quantitative evaluation, we test our method on the
“Cones” example (Middlebury stereo vision webpage:
http://vision.middlebury.edu/stereo/) where ground truth data
are given. The results are shown in Figure 5 with statistics
given in Table 1.

1. The supplementary video can be found from the following site:
http://www.cad.zju.edu.cn/home/gfzhang/projects/refilming/
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(a) (b) (c) (d) (e)

Fig. 6. Video sprite extraction with background completion. (a) One frame from an input video in which we want to
extract the man. (b) The completed background by re-projecting pixels from other frames. (c) The extracted sprite. (d)
The automatically computed background depth map. (e) To determine the position of the sprite plane, we only need
two clicks at the contact points between the person and the ground.

foregroundbackground

unknown

cut cut cut
cut mask
projection

cut mask
projection

Fig. 7. Bilayer separation. Starting from the embracing key frames (frames on the left and right columns), the depth
maps are separated into two layers as indicated in the object masks. Then the masks are projected onto the in-between
frames to automatically generate the corresponding trimaps by identifying the difference between two projected masks.
Pixels receiving consistent mask values are labeled as either foreground or background, while the inconclusive pixels
are labeled as unknowns (colored in green).

TABLE 1
Error statistics on the “Cones” example.

Algorithm Cones
nonocc all disc

Initialization 3.86 6.17 10.7
Bundle Optimization 2.89 5.76 8.10

The “Cones” example contains 9 images. In disparity ini-
tialization, for each image, we employ the method in [2] to
initialize its disparity map, making use of all other 8 images (as
shown in Figure 5(d-f)). The segmentation errors cause a few
visual artifacts around the discontinuous object boundaries.
Then we perform bundle optimization for two passes. In each
pass, we refine disparity mapt while fixing the others. This
process takes for each frame about 15 seconds, where 2
seconds are spent on running BP (with a Quad-core Xeon
2.66GHz CPU). We have tested with a similar procedure using
the α-β -swap graph cuts and found that several minutes are
required to produce a comparable result.

After bundle optimization, the disparities are improved and

their maps become more consistent with each other. Figure 5(j-
l) show the close-up comparisons where the final results have
much less artifacts around the discontinuous boundaries. We
also performed the quantitative evaluation (the ground truth
map of the 2nd image is publicly available) and show the
statistics in Table 1. It demonstrates that the disparity errors
are reduced after the final bundle optimization.

4 LAYER SEPARATION AND COMPLETION

Once the dense depth maps are available, we perform layer
separation and background completion, to prepare for the
visual effect generation in the following re-filming module.
We provide users with interactive tools to locally modify the
video content in a temporally consistent manner. For these
operations, users only need to process one or a few frames,
while the effect is propagated to the rest of the video.

4.1 Sprite Extraction and Background Completion

We first describe how to use the inferred depth to estimate
the background and to extract the sprites (moving objects)
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from the input video. Object segmentation/extraction is one
of the most popular tools in image editing [26], [27]. It is also
essential in many video applications, such as object removal
and view interpolation. Its major challenge is how to obtain
a sharp and clear boundary that is temporally consistent over
the frames. In our depth-inferred video, these moving objects
usually do not receive valid depth information because they
violate the multi-view geometry constraint [14]. However,
similar to the video matting method of Chuang et al. [4],
our sprite extraction can benefit from background completion,
which makes the matting solver robust.

In particular, we estimate the missing background pixels by
projecting the neighboring views (frames) to the current frame
given the dense depth maps. In order to avoid ghosting artifacts
and the loss of high-frequency details, we employ the method
proposed in [23] to reconstruct consistent view-dependent
backgrounds for all frames. This background completion
method is not only applicable to object extraction, but also
usable for creating “predator” effect and view interpolation to
be described in the next section.

After the background is completed, we create an object
trimap (a mask containing three regions, indicating the fore-
ground, background, and unknown pixels) for each frame and
extract the moving objects by applying the video matting
method [4] with the estimated background. For illustration,
in Figure 6(a), we show an input frame containing a walking
man. The background is completed in (b). The matting result
in (c) is generated using the color information from both (a)
and (b).

4.2 Sprite Representation

To make an inserted video sprite appear natural in another
video, we typically require more than just the sprite matte
and color. One example is that if we naı̈vely (that is, through
directly copying and pasting) composite the sprite of a walking
man to a target video, the sprite may look like floating in the
new scene, due to the difference of the two camera motions.
Therefore, in order to achieve seamless insertion, the depth,
scale, and position of the sprite relative to the camera mustbe
recorded during extraction and be accounted during insertion.

Nonetheless, moving objects usually do not satisfy the rigid
color constancy constraint, and hence their depth values cannot
be estimated by multi-view stereo algorithms. In experiments,
we found that a coarse depth estimation for the extracted
sprite is usually sufficient in regard to the purpose of video
composition. For instance, the depth of the walking man in
Figure 6 can simply be represented by a 3D plane.

In our system, we use a plane perpendicular to the ground to
approximate the video sprite in each frame. The position and
orientation of the 3D plane are identified by two anchor points
(as illustrated as the green dots in Figure 6(a)). Moreover,if
the 3D plane is known to be orthogonal to the camera viewing
direction, one anchor point is sufficient. The anchor points
are obtained by asking the user to click at the contact points
between the sprite and the ground (feet of the man in Figure
6(e)). Since the depth of the static background is available,
the depth values at the contact points are then looked up

from the background and are used to compute the position
and orientation of the 3D plane. The user only operates on
key frames, and the 3D sprite plane in other frames can be
linearly interpolated from two embracing key frames.

4.3 Layer Separation for Static Scene

As the inferred depth only represents a partial geometry, in
order to achieve practical video content editing, it is sometimes
necessary to explicitly separate the static scene (with inferred
depth) into layers, e.g. simulating the scene occlusion. There
is no need to perform layer separation respectively for each
frame. Instead, our system allows the user to operate in
a sparse number of key frames, and propagates the layer
information to the rest of the video.

By treating the depth as an additional color channel, we
perform a bilayer segmentation using the method of Rother
et al. [5] to iteratively separate the static objects in different
layers. The process is briefly illustrated in the left- and right-
most columns of Figure 7. Then we develop a novel method to
automatically propagate the cutout information from the key
frames to all others. This information can be used to reliably
form a trimap with a narrow unknown region for each frame.
Note that automatic propagation of one trimap to other frames
by optical flow is usually difficult and unreliable [4].

Our cutout propagation is based on a geometry projection
process and is illustrated in Figure 7. First, the user selects
key framesIk0, Ik1, · · ·, Ikn with every interval of about 50
frames and cuts the object out. Using depth information,
we then project the object cut-out masksMki (0 ≤ i ≤ n),
to other in-between frames and make each of them receive
two object-mask projections. The masks only contain binary
values where the object pixel is labeled 1 and non-object pixel
is labeled 0. Suppose framej (ki < j < ki+1) receives two
mask projectionsM′

ki
and M′

ki+1
. We compare the projected

values M′
ki
(x) and M′

ki+1
(x) for each pixel x and label it

as unknown ifM′
ki
(x) 6= M′

ki+1
(x). Otherwise, the pixel with

M′
ki
(x) = M′

ki+1
(x) = 0 is defined as background while the

pixel with M′
ki
(x) = M′

ki+1
(x) = 1 is regarded as foreground.

Thus, a trimap for framej is formed with the estimated
foregound, background, and unknown regions. The unknown
regions are usually very narrow along the layer boundary due
to the high accuracy of our depth estimation. In experiments,
the method can generate 50 trimaps per second. A working
example is illustrated in the middle column of Figure 7.
Finally, we apply the border matting [5] to further refine the
binary segmentation.

5 APPLICATIONS

With the above tools and the depth-inferred video(s), various
visual effects can be created in our system, that are temporally
and spatially consistent. As the video results are dynamic in
nature, readers are referred to our supplementary video that
gives a better presentation of the results.

5.1 User Interface

We first briefly describe the design of our user interface. It is to
facilitate navigating the sprite library and flexibly inserting the
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Fig. 9. Object insertion. The top row shows the original frames from a video captured by a hand-held camera. The
bottom row shows the corresponding frames after inserting a performing elephant. Note how its position and scale are
accurately aligned by our system. The occlusion of the elephant by the audience is also correctly resolved by object
extraction and layer separation.

Fig. 8. User Interface. The top editing toolbar provides
tools to seamlessly insert sprites into the target editing
video. The side panel on the right shows the sprite
instances. The left panel lists the command buttons for
generating different visual effects.

selected sprite into a target video. A set of interactive object
editing (such as transforming and cloning sprites) and shadow
synthesis tools are also provided.

A screen-shot of our UI is shown in Figure 8. The top-
row icons are for the masking/matting, object clone, transfor-
mation, and shadow synthesis tasks. The right panel displays
the object/sprite instances. It is allowed to select the desired
sprite, and insert it into the current video. Our system then
automatically aligns the contact points utilizing the depth
information. The object transformation tools enable adjusting
the position, orientation, and scale of the sprite. The leftpanel
lists the command buttons for generating visual effects.

5.2 Video Composition

During the insertion of a video sprite into a target background
video, we need to ensure the consistency of the camera
motion, color tone, and lighting. Figures 9 and 10 show two
composition examples.

Geometry registration with occlusion resolving As the
camera motions of the source and target videos can be
substantially different, we need to compensate them in order to
achieve a harmonic alignment. We first register the coordinate
systems between the source and target videos using the camera
parameters and denote the perspective transformation between
the two coordinate systems as a 4×4 matrix PA. So any time
when the user modifies the object position, orientation, and
size in the target video, the originalPA is multiplied by a cor-
responding 3D rotation, translation, or scaling matrix. These
matrix multiplications guarantee that the sprite is correctly
aligned to the new scene without causing the drift artifacts.
We also resolve the potential occlusion between the sprite and
the separated layers in the target video, by simply sorting the
depth in layers and rendering them in a far-to-near order. The
registration can be done in real-time, and hence facilitates the
interactive modifications.

Color tone adjustment Color tone compatibility between
the inserted sprites and the target background video is also
important to make the composition result realistic. In our sys-
tem, we employ the method in [28] to adjust the chromaticity
and intensity of the video sprites.

Shadow synthesis Shadow is an important visual cue
for creating the vivid impression of realism. Without it, the
inserted sprite usually looks unnatural. The shadow extracted
from a source video may not be useful for our video composi-
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(a) (b) (c) (d)

Fig. 10. Shadow synthesis. (a) The vector of the directional sunlight can be determined by the red and green
points indicated by the user. Their 3D coordinates can be retrieved from the depth map. (b) Synthetic shadow cast.
Comparison of the composition results (c) with and (d) without shadowing.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Depth recovery with moving objects. (a) One frame from the input video. (b) The estimated depth map
without matting out the moving objects. Although the depths of the moving object are not accurate, they do not affect
nearby background depth estimation. (c) The completed background image by depth projection. (d) The completed
background depth map. (e) The extracted moving objects. (f) The final depth map.

tion due to the possible variation of the background geometry
and light direction. Moreover, previous work in shadow ex-
traction either requires controlled lighting conditions [29], or
makes restrictive assumptions about the camera, lighting,and
shadow properties [30].

Our system synthesizes the shadow taking account of the
depth estimates. The target video shown in Figure 10(a) is
captured by a moving camera where the scene depths are
recovered. Our system only requires the minimal user interac-
tion to specify the lighting direction in one frame through
just two clicks, as shown as the red and green points in
Figure 10(a). Then the direction of the sunlight is constructed
by connecting the 3D point (red dot) to its projection on the
ground (green dot). The walking person in Figure 10(b) is also
extracted from a video captured by a moving camera and is
represented as a view-dependent 3D plane, which is similar

to that illustrated in Figure 6. Since the sunlight direction
is estimated, with the anchored 3D plane, the shadow can
be synthesized by projecting the sprite onto the ground as
shown in Figure 10(b). To improve the realism, we attenuate
the shadow intensity to simulate the indirect illumination, and
Gaussian-blur the shadow boundary to create the penumbra.
Figures 10 (c) and (d) compare the inserted walking man with
and without shadowing.

5.3 Depth-of-field

Depth-of-field is a common trick for emphasizing the object
of interest in filming and photography practices. Producing
a depth-of-field effect in video usually requires special and
expensive equipments [31]. In our system, such depth-of-
field can be easily obtained and modified even after video
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Fig. 12. Depth-of-field. The left-most column shows two frames from an input video. The middle column shows the
recovered depth maps. The right-most column shows the result of changing the depth of field.

(a) (c) (d)(b)

Fig. 13. “Predator” effect. (a) One original frame. (b) The recovered background image. (c) The actor becomes
transparent. (c) The actor is camouflaged with the “predator” effect.

acquisition. The estimated depth provides us with sufficient
information to re-focus the input video.

In our implementation, we employ the ray-tracing based
method proposed in [31] to focus on different objects. We
can freely control the focus plane as well as the width
of the depth-of-field by adjusting the size of out-of-focus
blur circle. Figure 12 illustrates how we change the focus
towards the walking girl and the street lamp. Note that this
example contains moving objects, whose depths cannot be
directly recovered by multi-view stereo method. Fortunately,
moving objects do not harm our depth estimation for the
visible background pixels. The moving pixels are regarded as
temporal “noise” as they are inconsistent among frames and
do not satisfy the multi-view geometry constraint. We show an
illustration in Figure 11. Though the estimated depths of the
moving objects are not accurate, it does not affect the depth
estimate of other background pixels in our system, as shown
in Figure 11(b).

To assign reasonable depth values to the moving object, we
first roughly mask the foreground out and estimate the oc-
cluded background colors and depths by projecting neighbor-

ing views to the current frame according to the recovered depth
information. The completed background image and depth
map are shown in Figure 11(c-d), respectively. The estimated
background helps matte foreground out. The moving objects
are represented by view-dependent 3D planes with assigned
depths, as shown in Figure 11(e). Finally, we put the moving
objects back to get the refined depth map (Figure 11(f)).

5.4 “Predator” Effect

Figure 13 demonstrates the “predator” effect (camouflaging
effect) on a video taken by a hand-held camera. It is produced
using our provided tools through a few steps. It should be
noted that only separating the foreground layer may not be
sufficient for creating the “predator” effect. It is becausethe
occluded background has to be shown behind the transpar-
ent characters. So we first recover the video depth maps.
Then we extract the object (the actor in this example) and
complete the video background using the technique described
in Section 4.1. One frame of the completed background is
shown in Figure 13(b). Finally, we camouflage the actor by
blending the input frames with the completed background
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 14. Bullet-time effect. (a-c) Three frames from an input video. (d) and (e) The object removed color frame and
depth map after background completion for the frame in (b). (f) The separated video sprite. (g-i) The frozen kicking
man viewed from two different angles.

(a) (b) (c) (d)

Fig. 15. Fog synthesis. (a) and (b) One frame with recovered depth map. (c) and (d) With the estimated depths, we
add fog to the scene with different densities.

frames (Figure 13(c)). To simulate the “predator” effect, we
add refractive and wavy distortion to the blending region
(Figure 13(d)).

5.5 Bullet-time Effect

Bullet-time effect refers to the effect of freezing an object (e.g.
pouring water) and meanwhile changing the camera viewpoint.
A representative example is in movieThe Matrix. To create
this effect, a dense video camera array or a sparse camera array
with the view interpolation technique [18] is usually required.

In our system, a limited bullet-time effect can be created
with a single video input. Figure 14 shows a jumping and
kicking person frozen in space. The input video is taken by
a hand-held moving camera. To generate this visual effect,
after recovering the depth for the background, we first remove
the man by using a background completion tool (Section 4.1).
One such frame is shown in Figure 14(d). The corresponding
depth map is shown in Figure 14(e). Then we set a point on
the sprite as a center for camera rotation, and create the virtual

camera viewpoints around it. Using depth assignments for the
background and sprite (represented as a view-dependent 3D
plane), the synthesized views from the virtual cameras can
naturally be interpolated from the nearest input frames.

5.6 Fog Synthesis

Figure 15 makes use of the depth-inferred video to create the
fogging effect. We use a simple fog model introduced in [32]
to compute the attenuated intensity for each pixel:

Ic = Io · e
−β z + I f og · (1− e−β z)

where I f og is the color of fog,Io is the original pixel color.
β is the scattering coefficient of the atmosphere andz is the
depth value. By adjusting the value ofβ , we can modify the
fog density.

6 DISCUSSION

To demonstrate the versatility of our system, we have chosen
several natural videos of different sceneries for visual effect
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TABLE 2
Timing statistics for creating the visual effects.

Visual Effect Preprocessing Effect Rendering
Background Completion Sprite Extraction Layer Separation

Video Composition (Fig. 9) 30 sec./frame 1 min./frame 5 sec./frame real time
“Predator” (Fig. 13) 10 sec./frame 30 sec./frame – real time

Fog Synthesis (Fig. 15) – – – real time
Depth-of-field (Fig. 12) 20 sec./frame 1 min./frame – 10 sec./frame
Bullet Time (Fig. 14) 20 sec./frame 30 sec./frame – 5 sec./frame

generation. Most videos are taken by a hand-held camera.
With our system, the user can flexibly generate the described
the visual effects, including video composition, depth-of-field,
“predator” effect, bullet-time, and fog synthesis.

Note that accurate depth maps are required to generate
realistic re-filming effects for several applications. Excessively
coarse depth maps may lead to unpleasing visual artifacts, such
as drifting, blurriness, and distortions, in video composition
and view interpolation. Background completion also demands
very accurate depths in order to correctly complete the back-
ground in several keyframes. Contrary to these applications,
a certain class of re-filming effects, such as depth-of-field
and fogging, has relatively lower precision requirement for
disparities.

6.1 Running Time
Our system can be divided into a few unsupervised operations
and phases requiring simple user interactions. The former
includes recovering camera parameters with a depth video.
With multi-thread programming, it takes about 2 minutes to
process one frame (640×480 pixels) using a Quad-core Xeon
2.66GHz CPU.

The static layer separation process is fast, which typically
takes less than 5 minutes to process hundreds of frames. The
time spent on background completion depends on the frame
resolution and the size of missing region. It typically takes
about 20 seconds to process a frame with 640×480 pixels.
The time for sprite extraction and layer separation depends
on the number of objects to process and the complexity of
the object boundary. With the estimated background, moving
object extraction typically takes about 30 seconds (including
user interaction) to extract one moving object per frame.
Besides the computation, what the user inputs is no more than
a few clicks and sketching. Thus its usage is not tedious.

Table 2 lists the statistics of the average time spent in creat-
ing different visual effects by several novice users with just a
few practices and short learning curve. As most computationis
spent on the pre-processing of layer separation and completion,
the visual effects can be created rapidly. Especially, if there is
no moving object in the scene, the fogging and depth-of-field
effects can be created immediately after the automatic depth
recovery. With necessary pre-processing, video composition,
fog synthesis and the “predator” effect can be produced in
real-time.

6.2 Limitations and Future Work
In our experimental results, we have demonstrated that the
depth recovery method can handle well a large class of

(a) (b)

Fig. 16. A video frame (a) and the estimated depth
map (b). In the red rectangle, because the disparities
around the tree branches have inherent depth ambiguity
regarding the nearly-constant-color background sky, the
depth estimates are not all correct.

camera motions. However, similar to other multi-view stereo
algorithms, if there is not sufficient camera movement, the
recovered depths could be defective. This problem has been
observed and widely studied in multi-view geometry [14].
Fortunately, this problem does not affect significantly the
object insertion and removal, because small camera motion
only results in less accurate depth estimation, but does not
cause the drift artifacts.

Another limitation of our depth recovery is that, if the
scene contains extremely textureless regions, there may exist
inherent ambiguity for depth inference. For these regions (such
as the clear blue sky), our system does not guarantee to pro-
duce correct depth initialization even with color segmentation,
which could further affect the succeeding bundle optimiza-
tion. As shown in Figure 16, the near-constant color in the
background sky can be assigned with different depth values,
all of which happen to satisfy photo-consistency constraint.
So, without prior knowledge, inferring correct depth values in
these regions is extremely difficult. Part of our future workis
along the direction of solving this problem.

The quality of SFM or depth maps affect the finally
produced re-filming effects. It would be desirable if, given
an input video, the system automatically tells whether the
estimates are sufficiently good or not. However, automatically
evaluating SFM is challenging and the possible solutions
include visually inspecting the recovered 3D structure as well
as the camera trajectory, and inserting a virtual object to see if
it drifts. For the inferred depth maps, the quality could possibly
be measured by the degree of temporal consistency.

For video composition, if the illumination in the source and
the target videos are substantially different, even using color
adjustment, unrealistic results may still be produced. We plan
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to investigate building accurate model for sprites such that the
illumination information can be estimated.

Finally, for video composition, since we only have partially
approximated geometry information, i.e., the simplified view-
dependent 3D planes, for the moving object, our system
requires that different views of the moving object between
the source and target videos are not too large to avoid
unnatural object insertion. For example, if the source camera
is panning whereas the target camera rotates, distortion of
the inserted sprite may be produced. Our bullet-time effect
also has the similar limitation. Note that the layer represented
sprite does not cause any problem in producing the “predator”,
fog synthesis, and depth-of-field effects even if the cameraor
object moves along a complex trajectory.

7 CONCLUSIONS

We have presented a comprehensive and semi-automatic video
editing system, that allows for creating visually plausible re-
filming effects. The cornerstone of our system is a robust video
depth estimation method to automatically produce temporally
consistent and highly accurate depth. Using this information,
background completion, sprite extraction, and layer separation
are achieved with only a small amount of user interaction
mostly on sparse key frames. Our system also contributes
a set of convenient tools allowing user to flexibly create
convincing visual effects, including composition, “predator”
effect, view interpolation, depth-of-field, and fog synthesis,
avoiding challenging 3D modeling and refitment.
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