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Abstract —Compared to still image editing, content-based video editing faces the additional challenges of maintaining the spatio-
temporal consistency with respect to geometry. This brings up difficulties of seamlessly modifying video content, for instance,
inserting or removing an object. In this paper, we present a new video editing system for creating spatio-temporally consistent and
visually appealing re-filming effects. Unlike the typical filming practice, our system requires no labor-intensive construction of 3D
models/surfaces mimicking the real scene. Instead, it is based on an unsupervised inference of view-dependent depth maps for all
video frames. We provide interactive tools requiring only a small amount of user input to perform elementary video content editing,
such as separating video layers, completing background scene, and extracting moving objects. These tools can be utilized to produce
a variety of visual effects in our system, including but not limited to video composition, “predator” effect, bullet-time, depth-of-field, and
fog synthesis. Some of the effects can be achieved in real-time.

Index Terms —video editing, re-filming, depth estimation, composition, background completion, and layer separation.
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1 INTRODUCTION expansion algorithm to increase the precision of the depth

—I— HE wide availability of portable video capturing device€stimates obtained from the algorithm of Zhang et al. [2}e Th

allows home-users to access the image/video conteRgPut from this step is a set of temporally-consistent dens
in daily life. This can be evidenced by the fact that mor@epth maps that are accurate enough to maintain sharp object
and more home videos are shared and broadcasted ndaries. Based on these depth estimates, we introduce a

internet. Nevertheless, compared to the advancement of {R¥ €lementary video editing tools, allowing the user talgc
image editing algorithms (e.g., inpainting, segmentatamd MOdify the object color and structures.

matting), the development of the content-based videoregliti The first tool |s_for inferring the _m|ssmg_depth and C(_)Ior of
is still left far behind in terms of the diversity, practidy, the background pixels through an information propagatian p
and user-friendliness. A major difficulty comes from the tiaul C€SS Over the video frames. Then we introduce a robust moving
frame nature of a video that requires high temporal consigte object (sprite) extraction method taking account of boté th
over frames. Unfortunately, such consistency is widelyvkmo _depth and color information. The depth of the extractedtapri

as challenging to maintain due to the difficulty in acquiriné® @S0 inferred and represented by a 3D plane. Finally, we
the accurate geometry. describe a method to naturally separate the static backdrou

In the film industry, the typical solution to creating dnte fine layers. With these tools, a spectrum of speciakesfe
visually plausible video editing result is to use specialljuch as depth-of-field, fog synthesis, view interpolatiery
designed equipments and set up a user-controlled envirtnm&llet-time effect), “predator” effect (camouflaging effg and
The typical configurations include blue-screen backgroun¢fl€0 composition, can be created. Figure 1 shows a set of
and motion capture. To enable the modification of vidé§ese re-filming effect examples. Our semi-automatic depth

content, 3D models are usually constructed, rendered wiftimation in the system makes visual effect generatiorimot
carefully tuned lighting, and overlaid onto the video. Alese @ frame-by-frame manner, and thus reduces the possible user
procedures involve the manual intervention by the skilleat p Intéractions. It benefits not only professionals but alseic®
fessionals. Attempts have been made recently in [1] to desi@om_ejuser_s to produce visually appealing effects without
a more user-friendly video editing system for interactvel€Quiring significant cost and manpower.

constructing 3D models. However, creating a 3D model with

sufficient geometry details, e.g. a tree with many leaves, % RELATED WORK

still intractable, as a large number of fine objects need to be . . . . )
modeled from sparse feature points. In video editing, several interactive image/video segment

In this paper, we propose a new system for editing casdign/matting techniques [3], [4], [5]. [6], [7]. [8], [9]. 10],
videos without explicitly reconstructing 3D geometry misde [11] have been developed. Most of them only use the color
The input single or multiple video clips are allowed to bectak information or require special camera configurations. bewi

by a hand-held moving camera. Our system contributes Tgtching, Sand and Teller [12] proposed to produce spatio-
the following respective areas. We describe an efficiergiey €MPoral alignment between two videos following spatially
similar camera trajectories. The 2D motion informationssd

*Corresponding authors: Guofeng Zhang and Hujun Bao in this method to align video frames. This method is not
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Input video "Predator" Effect View Interpolation

Fig. 1. The left column shows the snapshots of the input videos. The image frames on the right show a set of exemplar
re-filming effects from our system.
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Fig. 2. The overview of our system.

applicable to a single video input. Given two video sequsncifames, by adding a temporal smoothness term. Most regently
of different scenes acquired with moving cameras, Xiao £hang et al. [2] proposed a bundle optimization method to
al. [13] proposed seamlessly transferring a static 3D tobjaeconstruct temporally consistent video depth maps. In our
from one sequence to the other. However, they did not discissstem, we improve this method by dramatically increasing
the problem of registering moving objects. the depth precision without introducing much computationa
Recovering the camera motion is essential for video editingverhead. Bhat et al. [23] introduced an image-video frame-
This can be achieved using the structure-from-motion (SFMrk for automatically enhancing videos using several high
techniques. The state-of-the-art SFM algorithms can aatiem resolution photographs. This method is also limited to only
cally recover sparse 3D points and camera position for & larfgandling the videos of static scenes.
class of camera motions [14], [15], [16]. Our system employs
the SFM method of Zhang et al. [16]. For content-based vidéb CREATING DEPTH VIDEO

editing, using SFM to compute a sparse set of 3D points is NGlyure 2 illustrates an overview of our system. The input can
sufficient as it does not resolve the geometrical relatiothef be a Sing|e or mu|t|p|e video C”ps_ Our System automal}'ca”
scene. Hengel et al. [1] introduced an interactive apprdachrecovers the camera parameters and the complementing depth
build 3D models from a video. However, for complex naturaideo. With these view-dependent per-frame depth maps, we
scenes (e.g. a tree with many leaves), such an interactiy@ able to interactively perform sprite extraction, lagepa-
reconstruction becomes labor-intensive and may not evenfgon, and background completion. Finally, in the re-filgi
tractable. module, various visual effects can be created using these
Given an input of multiple images, dense depth maps certracted sprites, separated layers, and backgroundsouwit
be estimated by multi-view stereo algorithms [17], [18R][1 explicit 3D model/surface reconstruction.
[20], [21]. However, these methods compute the depth mapWe employ a multi-view stereo algorithm to compute the
for each frame independently and may not preserve tempadapth map for each frame, in order to generate a high-quality
consistency. Kang and Szeliski [22] addressed this prolbgm depth video. We improve the method of Zhang et al. [2]
simultaneously optimizing a set of depth maps at multipe kewhich includes a bundle optimization and incorporates the



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

51 disparity levels

(a) (b)

201 disparity levels
(c) (d

Fig. 3. Depth-level expansion. (a) One frame from the input video. (b) The estimated disparity map with 51 disparity
levels in a single BP pass. The banding artifact due to aliasing is noticeable. (c) The estimated disparity map with 201
disparity levels in a single BP pass. (d) The estimated disparity map with our two-pass BP. The results of (c) and (d)
are quite comparable in quality.

geometric coherence constraint to overcome the vulndésabil The data ternky is defined as

of the depth estimation to image noises, occlusion, androthe P

problems. Our improvement lies in a depth-level expansion Eq(De; 1,D\Dy) = Zl—u(x)-L(x, Dt (x)); @
algorithm to increase the depth precision without intradgc o . .

much computational overhead. The recovered depth maps Where the normalization factor is written as

not only temporally consistent but also accurate to retain u(x) = 1/ maxL(x, D¢(x)).

the sharp discontinuous object boundaries. Such quality is Dt (x)

especially important for generating visually plausibldim@ed L(x,D¢(x)) is the disparity likelihood term proposed in [2],
videos. In what follows, we first briefly describe the bundlﬁounting in both the color and geometry constraints.

optimization algorithm. The smoothness term is defined as

E(D)=5 ¥ A-min{[Dx)-Duyl.n}. @)

3.1 Bundle Optimization X yeN(x)

Consider a video sequence wittframes,| = {lt =1,...n},  \here N(x) denotes the set of neighbors of pixel A is
the objective of depth recovery is to obtain a set of d|s;21ar|;:1 smoothness weight, amgl determines the upper limit of

maps D = {D¢t = 1,....n}. k(X) represents the color (Or o cost. In all our experiments, = 5/(dmax — Gmin), N =
intensity) of_pixelx in lg. It _is a 3-vector _in a _color image 0.05- (Chnax — Grin), @S [nin: may{ IS the range of disparity.

or a scalar in a grayscale image. The disparity vdli®&) 15 minimize E(D;) and accordingly estimate the opti-
is defined as the inverse of depth i.e., Di(x) = 1/2.. FOI —q gigparity values, we uniformly quantize the disparity
simplicity's sake, the terms “depth” and “disparity” areeds i, gjiscrete values. We use the method proposed in [2] to
mterchangeabl.y. . . first initialize the disparity maps, and then refine them by
_ The depth _V|deo estimation is based on a bundle Opt'm'zﬁ‘mimizing the energy in (1) using an efficient loopy belief
tion model with the energy defined as propagation [24]. Each pass starts from frame 1. To reduce

o n . the computational complexity, when disparity majs being
E(D;) = Zl(Ed(Dt;|,D\Dt)+Es(Dt))y (1) refined, the depth estimates of all other frames are fixed. In
= this case, (1) is simplified to
where the data terrEq measures how well the disparity E¢(Dy) = Eq(Dy) + Es(Dy) 4)

fits the given sequende and the smoothness teiffg encodes
the spatial smoothness. We minimig€D;|) to estimate the as all Eq(Dy) and E¢(Dy), wheret’ #t, have the fixed
video depth maps. energy. The data terrky(D;) associates frame with about
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Fig. 4. Depth level expansion. The top row shows that we
first estimate a coarse-level disparity value d? between
dmin and dmax. The bottom row shows that the refined
disparity d} is obtained by splitting a coarse level to many
fine levels around d? .

40 neighboring frames in energy computation according

its definition. Depth maps are sequentially refined untifrfea

n has been processed. In our experiments, two passes
optimization on the whole video are usually sufficient.

® )
3.2 Depth-Level Expansion
In the above depth estimation, we use belief propagation (B '
to minimize the energy in (4). The computational complexi -
)

is linear to the number of labels, i.e., the number of depth (0] (k
levels. Hence, accurate depth estimation using a large num- B ,

ber of levels implies large memory consumption. Here, g9 >. f(igne ”example. @'ch) Th;fth_, 4”; d?”d §th
propose a level expansion method to densify the levels |8?agefo one sequ.enlce, (')-T(L) d.e |n_|t|a |spafr;ty
depth. It is a coarse-to-fine approach to significantly refirL@a%SI or @'@ r_espe_c';lv_(le_g. (gl-l) e disparity maps after
the inferred depth without introducing expensive compatat PUN%'€ optimization. (j-) The close-ups.

Kang et al. [25] proposed a hierarchical graph cut algorithm

to accelerate the global optimization for multi-view stere ided' for inspecting the quality of the inferred depth maps.

i ) . v,
The complexity of each level is quadratic to the number (gompared to the single-pass BP with depth levels of 501

labels. In contrast, our depth-level expansion is based on_a
; . - our two-pass approach consumes only 10% memory space

two-pass BP algorithm, where in each pass the computationa . . :
L and runs 7 times faster. The quality of the inferred depths
complexity is linear to the number of labels. Another reasan

that we choose BP is that the distribution of the data co%?s por_nparable. Figure 3 shows a comparison. Due fo the
. L . T Imitation of memory, we are only able to run the one-pass BP
in our bundle optimization model is usually distinctive, iatn

) . : . with 201 disparity levels (instead of 501 disparity leveis)
makes BP CoNverges very quickly (10 iterations are SUfﬂCIegomparison. Figure 3(b) is the result of a single-pass BR wit
in our experiments).

T i . . ... 51 disparity levels. Figure 3(c) shows the result of a single
int-(I)—OSTllrg\rglzs:eE\t/ﬁztr)ef?r:glr: ﬁ’(al’/v; first quantize all disparities pass BP with 201 disparity levels. Figure 3(d) is the restilt o
' our two-pass BP with 201 disparity levels (the first pass with
©—d 4 L - (chna— Ghi) K—0. .50 51 disparity levels and the second pass with 9 disparityi$gve
kK Emin T g \rmaxe Emings T The total number of iterations is 10. There is nearly no \isua
Then we apply BP to minimize the energy (4) and r(_:‘ﬁngifference _between (c) and (d), and the average qufane'tativ
the depth maps. We denote the estimated disparity value Hiference is 00214 dmax— dmin). Only 0.16% of the pixels
pixel x as d2, whered? = d?. Figure 4 llustrates this idea, 2r€ With disparity difference larger thag (dmax— din) - If our
Afterwards, we construct finer disparity levels for pixebnly first-pass BP runs with more labels, the difference could be
in range(d ,,d2, ] except the extremal values k=0 and urther reduced.
k=50. It is done by quantizing the depths[df_,.dy ,] into
another 21 levels, where the néth level is 3.3 Evaluation with Middlebury Stereo Images

i

1

(U]

For quantitative evaluation, we test our method on the
“Cones” example (Middlebury stereo vision webpage:

The optimization method described in Section 3.1 is thewl usréttp:// vision.middlebury.edu/stereo/) where groundfirdata

again to refine the depth values. Only two passes of BP c%lrr\?er?'\i/r?r;aglgelresuns are shown in Figure 5 with statistics
efficiently compute the depth with hundreds of levels. 9 '

_We demonstrate one of our inferred video depth maps iny The supplementary video can be found from the following: sit
Figure 3(d). Readers are also referred to our supplementatty://iwww.cad.zju.edu.cn/home/gfzhang/projects/refining/

i :
di1=d|9+%~(d;9+1—d871)’ i=0,...,20.
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Fig. 6. Video sprite extraction with background completion. (a) One frame from an input video in which we want to
extract the man. (b) The completed background by re-projecting pixels from other frames. (c) The extracted sprite. (d)
The automatically computed background depth map. (e) To determine the position of the sprite plane, we only need
two clicks at the contact points between the person and the ground.

cut mask
projection

cut
proj

Fig. 7. Bilayer separation. Starting from the embracing key frames (frames on the left and right columns), the depth
maps are separated into two layers as indicated in the object masks. Then the masks are projected onto the in-between
frames to automatically generate the corresponding trimaps by identifying the difference between two projected masks.
Pixels receiving consistent mask values are labeled as either foreground or background, while the inconclusive pixels
are labeled as unknowns (colored in green).

TABLE 1

- " ., their maps become more consistent with each other. Figirre 5(
Error statistics on the “Cones” example.

[) show the close-up comparisons where the final results have
much less artifacts around the discontinuous boundaries. W

Algorithm Cones L .
nonocc  all  disc also performed the quantitative evaluation (the grounthtru
Initialization 3.86 6.17 10.7 map of the 2nd image is publicly available) and show the
Bundle Optimization| 2.89 576 8.10 statistics in Table 1. It demonstrates that the disparitgrer

are reduced after the final bundle optimization.

The “Cones” example contains 9 images. In disparity ind LAYER SEPARATION AND COMPLETION

tialization, for each image, we employ the method in [2] t®)nce the dense depth maps are available, we perform layer
initializg its_disparity map, making use of_all other 8 imadas separation and background completion, to prepare for the
shown in Figure 5(d-f)). The segmentation errors cause a fgyéa| effect generation in the following re-filming module
visual artifacts around the discontinuous object bouesiari \we provide users with interactive tools to locally modifyeth
Then we perform bundle optimization for two passes. In €agieo content in a temporally consistent manner. For these
pass, we refine disparity mapwhile fixing the others. This operations, users only need to process one or a few frames,

process takes for each frame about 15 seconds, whergyie the effect is propagated to the rest of the video.
seconds are spent on running BP (with a Quad-core Xeon

2.66GHz CPU). We have tested with a similar procedure using ] ) .

the a-B-swap graph cuts and found that several minutes #fel SPrite Extraction and Background Completion

required to produce a comparable result. We first describe how to use the inferred depth to estimate
After bundle optimization, the disparities are improved anthe background and to extract the sprites (moving objects)
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from the input video. Object segmentation/extraction ig orfrom the background and are used to compute the position
of the most popular tools in image editing [26], [27]. It is@l and orientation of the 3D plane. The user only operates on
essential in many video applications, such as object remokay frames, and the 3D sprite plane in other frames can be
and view interpolation. Its major challenge is how to obtailinearly interpolated from two embracing key frames.

a sharp and clear boundary that is temporally consistent ove

the frames. In our depth-inferred video, these moving dbject.3 Layer Separation for Static Scene

usually do not receive valid depth information because they ihe inferred depth only represents a partial geometry, in
violate the multi-view geometry constraint [14]. Howeverg ger to achieve practical video content editing, it is stmes
similar to the video matting method of Chuang et al. [4fecessary to explicitly separate the static scene (witsried
our sprite extraction can benefit from background completiodepth) into layers, e.g. simulating the scene occlusiorr@h
which makes the matting solver robust. is no need to perform layer separation respectively for each
In particular, we estimate the missing background pixels Byame. Instead, our system allows the user to operate in
projecting the neighboring views (frames) to the curreatfe sparse number of key frames, and propagates the layer
given the dense depth maps. In order to avoid ghosting eifajformation to the rest of the video.
and the loss of high-frequency details, we employ the methodpy, treating the depth as an additional color channel, we
proposed in [23] to reconstruct consistent view-dependgiérform a bilayer segmentation using the method of Rother
backgrounds for all frames. This background completiog 1. [5] to iteratively separate the static objects in efit
method is not only applicable to object extraction, but al§gyers. The process is briefly illustrated in the left- arghti
usable for creating “predator” effect and view interpa@atio  most columns of Figure 7. Then we develop a novel method to
be described in the next section. automatically propagate the cutout information from thg ke
After the background is completed, we create an objeghmes to all others. This information can be used to refiabl
trimap (a mask containing three regions, indicating the-forform a trimap with a narrow unknown region for each frame.
ground, background, and unknown pixels) for each frame aRgte that automatic propagation of one trimap to other fame
extract the moving objects by applying the video mattingy optical flow is usually difficult and unreliable [4].
method [4] with the estimated background. For illustration Our cutout propagation is based on a geometry projection
in Figure 6(a), we show an input frame containing a walkingrocess and is illustrated in Figure 7. First, the user telec

man. The background_ is Completed_ in (b) The matting resq{@y frames|ko, Ik, -+ lkn with every interval of about 50
in (c) is generated using the color information from both (d}ames and cuts the object out. Using depth information,
and (b). we then project the object cut-out mask (0 <i < n),

to other in-between frames and make each of them receive
two object-mask projections. The masks only contain binary

] . . ) values where the object pixel is labeled 1 and non-objeda pix
To make an inserted video sprite appear natural in anothgrigpeled 0. Suppose frame (ki < j < k1) receives two

video, we typically require more than just the sprite mattg55k projectionsl\/l,’q and Mllq . We compare the projected
and color. One example is that if weTnely (that is, through ;a5 M/ (x) and M, _(x) fBlr each pixelx and label it
directly copying and pasting) composite the sprite of a vnglk as unkncl)('wn M (x)k;ZlM’ (x). Otherwise, the pixel with
man to a target video, the sprite may look like floating in thFA, (%) = M, (XTZ 0 is ggﬁned as back ,round while the
new scene, due to the difference of the two camera motions Ky g

. N o
Therefore, in order to achieve seamless insertion, thehdep?(IXeI with Mka (x) = Mk«'H(X) =1 is regarded as foreground.

. . . hus, a trimap for framej is formed with the estimated
scale, and position of the sprite relative to the camera ineist .
. . . . foregound, background, and unknown regions. The unknown
recorded during extraction and be accounted during irserti

Nonetheless, moving objects usually do not satisfy thdrigregmns are usually very narrow along the layer boundary due

color constancy constraint, and hence their depth valuasata to the high accuracy of our dep'_[h estimation. In expenmen_ts
. - . : the method can generate 50 trimaps per second. A working
be estimated by multi-view stereo algorithms. In experiteen

A example is illustrated in the middle column of Figure 7.
we found that a coarse depth estimation for the extractﬁyina”y we apply the border matting [5] to further refine the
sprite is usually sufficient in regard to the purpose of Videkglmar ’se mentation
composition. For instance, the depth of the walking man in y S€9 '
Figure 6 can simply be represented by a 3D plane. APPLICATIONS

In our system, we use a plane perpendicular to the ground 1o . ) )
approximate the video sprite in each frame. The position a¥$jth the above tools and the depth-inferred video(s), weio
orientation of the 3D plane are identified by two anchor |cmint"sual effgcts can pe created in our system, that are temgpgrq
(as illustrated as the green dots in Figure 6(a)). Moredf/er,a”d spatially consistent. As the video results are dyr_lamlc i
the 3D plane is known to be orthogonal to the camera viewifigture, readers are referred to our supplementary video tha
direction, one anchor point is sufficient. The anchor poinives a better presentation of the results.
are obtained by asking the user to click at the contact points
between the sprite and the ground (feet of the man in Figupel User Interface
6(e)). Since the depth of the static background is availabM/e first briefly describe the design of our user interfaces toi
the depth values at the contact points are then looked fagilitate navigating the sprite library and flexibly inseg the

4.2 Sprite Representation
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Fig. 9. Object insertion. The top row shows the original frames from a video captured by a hand-held camera. The
bottom row shows the corresponding frames after inserting a performing elephant. Note how its position and scale are
accurately aligned by our system. The occlusion of the elephant by the audience is also correctly resolved by object
extraction and layer separation.

(=1 e-filming 06ee . oy
e 5.2 Video Composition

Bile Eéit View Flay T iting Re-
O COOFBUMS A @R L

g = N— During the insertion of a video sprite into a target backgbu
E L video, we need to ensure the consistency of the camera
mﬂ" — A motion, color tone, and lighting. Figures 9 and 10 show two
composition examples.
Fy— k p p
’ _{ Geometry registration with occlusion resolving  As the

i
A
1‘ camera motions of the source and target videos can be
" substantially different, we need to compensate them inrdcde
; achieve a harmonic alignment. We first register the cootdina
systems between the source and target videos using theaamer
g e and parameters and denote the perspective transformatiorebatw
e ' i *  the two coordinate systems as & 4 matrix Pa. So any time
when the user modifies the object position, orientation, and

Fig. 8. User Interface. The top editing toolbar provides Size in the target video, the originBh is multiplied by a cor-
tools to seamlessly insert sprites into the target editing responding 3D rotation, translation, or scaling matrixe3é
video. The side panel on the right shows the sprite Mmatrix multiplications guarantee that the sprite is cdiyec
instances. The left panel lists the command buttons for ~aligned to the new scene without causing the drift artifacts
generating different visual effects. We also resolve the potential occlusion between the spmide a
the separated layers in the target video, by simply sortieg t
depth in layers and rendering them in a far-to-near ordeg. Th

selected sprite into a target video. A set of interactiveeobj "€gistration can be done in real-time, and hence facistétte
editing (such as transforming and cloning sprites) and sladnteractive modifications.

synthesis tools are also proylded. S Color tone adjustment Color tone compatibility between
A screen-shot of our Ul is shown in Figure 8. The tOpme inserted sprites and the target background video is also
row icons are for the masking/matting, object clone, transf jyhortant to make the composition result realistic. In ogs-s

mation, and shadow synthesis tasks. The right panel displgym e employ the method in [28] to adjust the chromaticity
the object/sprite instances. It is allowed to select therelés 5ng intensity of the video sprites.

sprite, and insert it into the current video. Our system then

automatically aligns the contact points utilizing the dept Shadow synthesis  Shadow is an important visual cue
information. The object transformation tools enable atiljgs for creating the vivid impression of realism. Without it.eth
the position, orientation, and scale of the sprite. Thepefiel inserted sprite usually looks unnatural. The shadow etedac
lists the command buttons for generating visual effects.  from a source video may not be useful for our video composi-
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Fig. 10. Shadow synthesis. (a) The vector of the directional sunlight can be determined by the red and green
points indicated by the user. Their 3D coordinates can be retrieved from the depth map. (b) Synthetic shadow cast.
Comparison of the composition results (c) with and (d) without shadowing.

Q ‘f
(d) (e) (H

Fig. 11. Depth recovery with moving objects. (a) One frame from the input video. (b) The estimated depth map
without matting out the moving objects. Although the depths of the moving object are not accurate, they do not affect
nearby background depth estimation. (¢) The completed background image by depth projection. (d) The completed
background depth map. (e) The extracted moving objects. (f) The final depth map.

tion due to the possible variation of the background gegmetio that illustrated in Figure 6. Since the sunlight directio
and light direction. Moreover, previous work in shadow exs estimated, with the anchored 3D plane, the shadow can
traction either requires controlled lighting conditior29], or be synthesized by projecting the sprite onto the ground as
makes restrictive assumptions about the camera, lightind, shown in Figure 10(b). To improve the realism, we attenuate
shadow properties [30]. the shadow intensity to simulate the indirect illuminatiand

Our system synthesizes the shadow taking account of tﬁ@ussian-blur the shadow boundary to create the penumbra.

depth estimates. The target video shown in Figure 10(a)j@ures 10 (c) and (d) compare the inserted walking man with

captured by a moving camera where the scene depths @pgd Without shadowing.

recovered. Our system only requires the minimal user intera

FIOI’] to spe_C|fy the lighting direction in one frame thr_ougr%.3 Depth-of-field

just two clicks, as shown as the red and green points in

Figure 10(a). Then the direction of the sunlight is congedc Depth-of-field is a common trick for emphasizing the object
by connecting the 3D point (red dot) to its projection on thef interest in filming and photography practices. Producing
ground (green dot). The walking person in Figure 10(b) ie al& depth-of-field effect in video usually requires speciatl an
extracted from a video captured by a moving camera andespensive equipments [31]. In our system, such depth-of-
represented as a view-dependent 3D plane, which is simifeald can be easily obtained and modified even after video
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Fig. 12. Depth-of-field. The left-most column shows two frames from an input video. The middle column shows the
recovered depth maps. The right-most column shows the result of changing the depth of field.

.,@ = A(]_D) o © o m

Fig. 13. “Predator” effect. (a) One original frame. (b) The recovered background image. (c) The actor becomes
transparent. (¢) The actor is camouflaged with the “predator” effect.

acquisition. The estimated depth provides us with sufficiemg views to the current frame according to the recoveredhdep
information to re-focus the input video. information. The completed background image and depth

In our implementation, we employ the ray-tracing base®ap are shown in Figure 11(c-d), respectively. The estichate
method proposed in [31] to focus on different objects. Waackground helps matte foreground out. The moving objects
can freely control the focus plane as well as the widte represented by view-dependent 3D planes with assigned
of the depth-of-field by adjusting the size of out-of-focudlepths, as shown in Figure 11(e). Finally, we put the moving
blur circle. Figure 12 illustrates how we change the focu@Pjects back to get the refined depth map (Figure 11(f)).
towards the walking girl and the street lamp. Note that this
example contains moving objects, whose depths cannot hd “Predator” Effect

directly recovered by multi-view stereo method. Fortuhate Figure 13 demonstrates the “predator” effect (camouflaging
moving objects do not harm our depth estimation for theffect) on a video taken by a hand-held camera. It is produced
visible background pixels. The moving pixels are regarded gsing our provided tools through a few steps. It should be
temporal “noise” as they are inconsistent among frames apghed that only separating the foreground layer may not be
do not satisfy the multi-view geometry constraint. We show asyfficient for creating the “predator” effect. It is becauke
illustration in Figure 11. Though the estimated depths ef thyccluded background has to be shown behind the transpar
moving objects are not accurate, it does not affect the deptht characters. So we first recover the video depth maps.
estimate of other background pixels in our system, as showRen we extract the object (the actor in this example) and
in Figure 11(b). complete the video background using the technique destribe
To assign reasonable depth values to the moving object, imeSection 4.1. One frame of the completed background is
first roughly mask the foreground out and estimate the oshown in Figure 13(b). Finally, we camouflage the actor by
cluded background colors and depths by projecting neighbbtending the input frames with the completed background
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Fig. 14. Bullet-time effect. (a-c) Three frames from an input video. (d) and (e) The object removed color frame and
depth map after background completion for the frame in (b). (f) The separated video sprite. (g-i) The frozen kicking
man viewed from two different angles.

(®) (d

Fig. 15. Fog synthesis. (a) and (b) One frame with recovered depth map. (c) and (d) With the estimated depths, we
add fog to the scene with different densities.

frames (Figure 13(c)). To simulate the “predator” effece wcamera viewpoints around it. Using depth assignments for th

add refractive and wavy distortion to the blending regiobackground and sprite (represented as a view-dependent 3D

(Figure 13(d)). plane), the synthesized views from the virtual cameras can
naturally be interpolated from the nearest input frames.

5.5 Bullet-time Effect

Bullet-time effect refers to the effect of freezing an objexg.
pouring water) and meanwhile changing the camera viewpoi
A representative example is in movide Matrix. To create
this effect, a dense video camera array or a sparse camaya
with the view interpolation technique [18] is usually reqgd. le=lo-€ PP+l (1—eP?)
In our system, a limited bullet-time effect can be created
with a single video input. Figure 14 shows a jumping anf
kicking person frozen in space. The input video is taken
a hand-held moving camera. To generate this visual effe
after recovering the depth for the background, we first reano
the man by using a background completion tool (Section 4.1).
One such frame is shown in Figure 14(d). The correspondify D!SCUSSION
depth map is shown in Figure 14(e). Then we set a point o demonstrate the versatility of our system, we have chosen
the sprite as a center for camera rotation, and create thelir several natural videos of different sceneries for visuédatf

5.6 Fog Synthesis

{'gure 15 makes use of the depth-inferred video to create the
0gging effect. We use a simple fog model introduced in [32]
att? compute the attenuated intensity for each pixel:

hereltog is the color of fog,l, is the original pixel color.
is the scattering coefficient of the atmosphere ansl the
{epth value. By adjusting the value Bf we can modify the
g density.
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TABLE 2
Timing statistics for creating the visual effects.
Visual Effect Preprocessing Effect Rendering
Background Completion  Sprite Extraction  Layer Separatjon

Video Composition (Fig. 9) 30 sec./frame 1 min./frame 5 sec./frame real time

“Predator” (Fig. 13) 10 sec./frame 30 sec./frame - real time

Fog Synthesis (Fig. 15) - - - real time
Depth-of-field (Fig. 12) 20 sec./frame 1 min./frame - 10 sec./frame
Bullet Time (Fig. 14) 20 sec./frame 30 sec./frame - 5 sec./frame

generation. Most videos are taken by a hand-held camegi
With our system, the user can flexibly generate the describ
the visual effects, including video composition, depthiefd, ‘
“predator” effect, bullet-time, and fog synthesis. =
Note that accurate depth maps are required to gene

realistic re-filming effects for several applications. Egsively
coarse depth maps may lead to unpleasing visual artifaath, SEEEE s
as drifting, blurriness, and distortions, in video comgosi @ (b)
and view interpolation. Background completion also densand. . .
very accurate IL()jepths in ordgr to correctlsl complete the bacEk'g' 16. A video frame (a) and the estimated depth

ground in several keyframes. Contrary to these applicza,tiorﬁn ap (b). In the red rectangle, because the disparities

a certain class of re-filming effects, such as depth—of—fieﬁz{ound the tree branches have inherent depth ambiguity

. . . . regarding the nearly-constant-color background sky, the
and fogging, has relatively lower precision requirement fo .
disparities. depth estimates are not all correct.

6.1 Running Time

Our system can be divided into a few unsupervised operatidigera motions. However, similar to other multi-view stere
and phases requiting simple user interactions. The fornfafOrithms, if there is not sufficient camera movement, the
includes recovering camera parameters with a depth vidégcovered depths could be defective. This problem has been
With multi-thread programming, it takes about 2 minutes tgPserved and widely studied in multi-view geometry [14].
process one frame (640480 pixels) using a Quad-core XeonFo_rtungter, _th|s problem does not affect significantly th_e
2 66GHz CPU. object insertion and removal, because small camera motion

The static layer separation process is fast, which tygicaﬂ’”'y results _in Ies_s accurate depth estimation, but does not
takes less than 5 minutes to process hundreds of frames. FAESE the drift artifacts.
time spent on background completion depends on the framefnother limitation of our depth recovery is that, if the
resolution and the size of missing region. It typically takeSCene contains extremely textureless regions, there may ex
about 20 seconds to process a frame with €480 pixels. inherent ambiguity for depth inference. For these regisnsk{
The time for sprite extraction and layer separation depen@s the clear blue sky), our system does not guarantee to pro-
on the number of objects to process and the complexity @¢ce correct depth initialization even with color segmeata
the object boundary. With the estimated background, moviMglich could further affect the succeeding bundle optimiza-
object extraction typically takes about 30 seconds (iriciyd tion. As shown in Figure 16, the near-constant color in the
user interaction) to extract one moving object per framBackground sky can be assigned with different depth values,
Besides the computation, what the user inputs is no more tthof which happen to satisfy photo-consistency constrain
a few clicks and sketching. Thus its usage is not tedious. SO, without prior knowledge, inferring correct depth vaue
Table 2 lists the statistics of the average time spent intcrethese regions is extremely difficult. Part of our future wesk
ing different visual effects by several novice users witstja along the direction of solving this problem.
few practices and short learning curve. As most computasion The quality of SFM or depth maps affect the finally
spent on the pre-processing of layer separation and coimplet produced re-filming effects. It would be desirable if, given
the visual effects can be created rapidly. Especially,eéf¢his an input video, the system automatically tells whether the
no moving object in the scene, the fogging and depth-of-fiekbtimates are sufficiently good or not. However, automiica
effects can be created immediately after the automatichdegwaluating SFM is challenging and the possible solutions
recovery. With necessary pre-processing, video compesiti include visually inspecting the recovered 3D structure af w
fog synthesis and the “predator” effect can be produced &s the camera trajectory, and inserting a virtual objecetit

real-time. it drifts. For the inferred depth maps, the quality couldsgbly
S be measured by the degree of temporal consistency.
6.2 Limitations and Future Work For video composition, if the illumination in the source and

In our experimental results, we have demonstrated that tive target videos are substantially different, even usivigrc
depth recovery method can handle well a large class adjustment, unrealistic results may still be produced. Vda p
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to investigate building accurate model for sprites suchttii@ [9] J. Wang, P. Bhat, A. Colburn, M. Agrawala, and M. F. Cohtiner-

illumination information can be estimated. ggt(i)‘ée video cutout/ACM Trans. Graph., vol. 24, no. 3, pp. 585-594,
Finallly' for video comp-osition, _Si“C? we only-havg.par;i.all [10] Y. Li,'J. Sun, and H.-Y. Shum, “Video object cut and pas&CM Trans.
approximated geometry information, i.e., the simplifiedws Graph., vol. 24, no. 3, pp. 595-600, 2005.

dependent 3D planes, for the moving object, our syste[ﬁ"r] X. Bai_ and G. Sapiro,. “A geodesic_fram_ework for fast irstetive image
and video segmentation and matting,”li@CV, 2007

requires that different Vie\_Ns of the moving object betweq‘_ﬂZ] P. Sand and S. J. Teller, “Video matchingCM Trans- Graph., vol. 23,
the source and target videos are not too large to avoid no. 3, pp. 592-599, 2004.

unnatural object insertion. For example, if the source gamd13] J. Xiao, X. Cao, and H. Foroosh, 3D object transfer ketw non-
overlapping videos,” iINEEE Virtual Reality Conference, 2006.

is pgnning wher_eas the target camera rotates, d!stortion[ﬂﬁ R. I. Hartley and A. ZissermarMultiple View Geometry in Computer
the inserted sprite may be produced. Our bullet-time effect Vision, 2nd ed. Cambridge University Press, 2004.
also has the similar limitation. Note that the layer repnésg [15] M. Pollefeys, L. J. V. Gool, M. Vergauwen, F. Verbiest, Kornelis,

. . . y . J. Tops, and R. Koch, “Visual modeling with a hand-held carhera.
sprite does nOt cause any pro_blem n producmg the predator International Journal of Computer Vision, vol. 59, no. 3, pp. 207-232,
fog synthesis, and depth-of-field effects even if the canoera 2004.

object moves along a complex trajectory. [16] G. Zhang, X. Qin, W. Hua, T-T. Wong, P.-A. Heng, and H.oBa
“Robust metric reconstruction from challenging video semes,” in
CVPR, 2007.

7 CONCLUSIONS [17] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching gidielief

) ) o propagation,”|EEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 7,
We have presented a comprehensive and semi-automatic video pp. 787-800, 2003.

editing system, that allows for creating visually plausilpé- [18] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. A. J. Windeand
R. Szeliski, “High-quality video view interpolation using layered

filming eff_eCts_- The cornerstone of our system is a robustaid representation, ACM Trans. Graph., vol. 23, no. 3, pp. 600-608, 2004.
depth estimation method to automatically produce temporaf19] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, andSgeliski, “A

consistent and highly accurate depth. Using this inforomati comparison and evaluation of multi-view stereo reconstonctilgo-
rithms,” in CVPR (1), 2006, pp. 519-528.

background completion, sprite extraction, and layer sajmar [20] C. L. Zitnick and S. B. Kang, “Stereo for image-based iy using

are achieved with only a small amount of user interaction image over-segmentation|hternational Journal of Computer \Vision,
mostly on sparse key frames. Our system also contributes Vol 75, no. 1, pp. 49-65, 2007. . .

f ient tool llowi to flexibl " ] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. NtzS&Multi-
a set of convenient tools allowing user to flexibly crea view stereo for community photo collections,” I€CV, 2007.

convincing visual effects, including composition, “prémld [22] S. B. Kang and R. Szeliski, “Extracting view-dependelepth maps

effect, view interpolation, depth-of-field, and fog SyI’BhE from a collection of images International Journal of Computer Vision,
idi hallenging 3D modeling and refitment vol. 58, no. 2, pp. 139-163, 2004.
avolaing cha ging g . [23] P. Bhat, C. L. Zitnick, N. Snavely, A. Agarwala, M. Agrala, B. Cur-

less, M. Cohen, and S. B. Kang, “Using photographs to enhance
videos of a static scene,” iRendering Techniques 2007 (Proceedings
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