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Figure 1: (a) Original grayscale image. (b) Halftone image by the state-of-art error-diffusion [Ostromoukhov 2001]. (c) Our result. Note that
our result faithfully preserves the texture details as well as the local tone. All images have the same resolution of 445×377.

Abstract
This paper presents an optimization-based halftoning technique that
preserves the structure and tone similarities between the original
and the halftone images. By optimizing an objective function con-
sisting of both the structure and the tone metrics, the generated
halftone images preserve visually sensitive texture details as well
as the local tone. It possesses the blue-noise property and does not
introduce annoying patterns. Unlike the existing edge-enhancement
halftoning, the proposed method does not suffer from the deficien-
cies of edge detector. Our method is tested on various types of
images. In multiple experiments and the user study, our method
consistently obtains the best scores among all tested methods.

1 Introduction
Halftoning is a heavily used color quantization technique in digital
printing and imaging industry. It expresses a grayscale or color im-
age with a reduced number of paints while maintaining a close vi-
sual impression to the original image. The key to applying halfton-
ing is spatial integration, in which our human vision system (HVS)
perceptually “fuses” the intensity or color of quantized values as
viewed from a sufficient distance. Classical halftoning techniques,
such as ordered dithering and error diffusion, achieve the tone re-
production based on the principle of spatial integration [Ulichney
1987].

Halftoning algorithms are designed to deal with uniform textureless
regions. Graylevel ramps are successfully reproduced by advanced
halftoning methods [Ostromoukhov 2001; Mitsa and Parker 1992],
without introducing noticeable patterns. However, halftoning tech-
niques typically fail to convey the inherent pattern of textured or
structural regions.

A close inspection of the texture regions (e.g. Figure 1(b)) reveals
that the halftoning technique destroys the characteristic pattern, and
sometimes introduces aliasing artifacts (e.g. Figure 3). Figure 1(c)
shows the halftoning result of the technique that we introduce in
the paper. As can be clearly seen, this image reproduces the correct
tone, and at the same time it is faithful to the original texture look.

Common halftoning techniques suppress the appearance of artifacts
at the cost of over-blurring fine texture details. Several methods
have been proposed to deal better with texture. These methods [Es-
chbach and Knox 1991; Hwang et al. 2004; Kwak et al. 2006]
rely on edge enhancement techniques. However, edge enhancement
provides only a partial solution. As can be observed in Figure 7, it
is not sufficient to satisfy the human sensitivity to textures, such as
the failure to detect weak edges or improper emphasis of details.

In this paper, we introduce a new approach which optimizes the
local spatial distribution of the dots to produce a halftone image
that preserves the local tone as well as a resemblance to the origi-
nal texture, in the expenses of longer execution time. Our method
is based on a structure-similarity metrics that respects the human
vision sensitive patterns. We formulate the digital halftoning as a
minimization of an objective function that accounts for structure-
similarity as well as the tone-similarity. We show numerous results
of our method applied to a wide variety of images.

2 Related Work
Halftoning has been an active area of research for years [Ulich-
ney 1987; Jarvis et al. 1976]. Classical dithering methods in-
clude ordered dithering [Bayer 1973], Floyd-Steinberg error diffu-
sion [Floyd and Steinberg 1974], and Knuth’s dot-diffusion [Knuth
1987]. Their primary goal is to retain the local tone of the original
image. The main challenge is to reduce the associated noticeable
annoying patterns that these methods incur (see Figure 3).

In an effort to alleviate the appearance of these visually unpleas-
ant patterns, researchers applied spectral analysis to measure the
quality of the halftone images [Mitchell 1987]. It is accepted that
the ideal halftone image has a blue-noise spectrum. Mitsa and
Parker [1992] propose to construct a blue noise mask which can
produce a blue noise pattern. Geist et al. [1993] introduce a Marko-
vian framework to measure the aesthetics of halftoning, and to opti-
mize the halftone patterns. Ostromoukhov [2001] extends the stan-
dard error-diffusion method with variable diffusion factors for dif-
ferent intensity levels and gracefully creates a blue noise pattern.



Li and Allebach [2002] design a tone-dependent error-diffusion
method with the optimal error weighting and thresholding obtained
from the references. These references are the halftone result from
direct binary search, an iterative optimization method with neigh-
bor pixel-swapping. Baqai and Allebach [2003] incorporate printer
models with the direct binary search method to enhance the de-
tail rendition and tonal gradation. Zhou and Fang [2003] demon-
strate a variable threshold modulation method for removing artifact
in halftoning, especially at midtones. Kopf et al. [2006] propose
a recursive tiling approach for fast generation of blue noise. We
regard the halftoning technique of Ostromoukhov [2001] to be the
current state-of-the-art halftoning method. In our work, we com-
pare our results with this technique (e.g., Figure 1).

Although halftoning with blue noise properties can suppress many
of the annoying patterns, it may at the same time over-blur the fine
texture details in the original images. To alleviate this problem and
to better deal with textures, recent methods preserve the structural
details via edge enhancement. Eschbach and Knox [1991] improve
the basic error diffusion mechanism by modulating the threshold-
ing process with the edge response. However, since the modulation
is applied uniformly over the whole image, low-frequency regions
are affected as well. Figures 4, 7, and 12-15 show some of the
results using this edge enhancement halftoning method. Hwang
et al. [2004] improve the above method by considering spatial in-
formation as well. However, their method may sometimes blur
the edges. To reduce this defect, Kwak et al. [2006] improve the
method by considering both the local luminance average and varia-
tion. Li [2006] proposes to explicitly extract a binary edge map to
guide the error diffusion process. Although these methods generate
halftoning images with stronger edges, their performance directly
depends on the reliability of the edge detection operator. Moreover,
preserving edges is not necessarily equivalent to preserving human
vision sensitive textures in the original images as demonstrated in
Figure 7. The method we introduce in the paper directly targets
texture and preserves it by optimizing the halftoning.

Another class of halftoning techniques aims at the artistic appli-
cations [Ostromoukhov and Hersch 1995; Pnueli and Bruckstein
1996; Verevka and Buchanan 1999]. Their goal is to produce tone-
preserved screening with specific artistic patterns provided by the
user. An interesting technique in non-photorealistic rendering is
stippling [Deussen et al. 2000; Secord 2002]. This method can be
regarded as a special type of artistic halftoning with an emphasis on
the aesthetic distribution of the dots or other small icons.

3 Structure-aware Halftoning
Images are not aggregates of smooth pieces, they typically con-
tain textured regions. Textures consist of particular high-frequency
patterns which our visual system is sensitive to. To preserve the
characteristic look of these textured regions in a halftone image, we
present here a structure-aware halftoning technique. The goal is to
optimize the placement of the black dots in a bi-tonal halftone im-
age to better express the textures in the original grayscale image.
The challenge is to distribute the black dots so that locally they are
perceived to be similar to graylevel textures, and at the same time
their local tone needs to be preserved. Our approach is to directly
optimize an objective function that respects both the tone and the
texture. That is, the objective function consists of two terms: a tone
term and a structure term. While the first is quite simple to define,
the latter requires special care as there is no definite way to measure
distances among textures.

The basic concept of tone-aware halftoning is based on the spa-
tial integration response of the human vision systems (HVS) to
halftone images [Ulichney 1987]. It is well-known that the spa-
tial integration of HVS is very much like the effect of Gaussian

filter. Similarly, a structure-aware halftoning requires a measure
that respects the HVS so that the textures of the halftoning image
are perceived as the original. The structure measure that we use in
our work is based on the structural similarity measure (SSIM) in-
troduced by Wang et. al. [2004]. While most image-based distance
measures use pointwise signal differences (e.g., Mean Square Er-
ror or MSE), the SSIM considers image degradations as perceived
changes in structural information variation. Figure 2 depicts the
power of SSIM. The three images in (b-d) have the same MSE.
Clearly the MSE is not sensitive to the human visual system, while
the SSIM is intuitive and yields a consistent perceived visual error.

(c) (d)
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Figure 2: MSSIM comparison of image “bat” contaminated with
different types of distortions, all with the same MSE. (a) Orig-
inal image; (b) Contrast-stretched image, MSSIM = 0.9640; (c)
JPEG compressed image (with low quality), MSSIM = 0.6834; (e)
Blurred image, MSSIM = 0.2827.

Optimization Given a grayscale image I, the corresponding
halftone image Ih is obtained by minimizing the following objec-
tive function:

Objective(I, Ih) = wgG(I, Ih)+wt (1−MSSIM(I, Ih)), (1)

where G(I, Ih) measures the tone similarity between the original
and the halftone images; and MSSIM(I, Ih) measures the structure
similarity. These two terms are described in detail in the following
subsections. The wg and wt are the weighting factors, such that
wg +wt = 1. In all our experiments, we set wt = wg = 0.5.

Our optimization can start with any bi-tonal image with global gray-
ness (ratio of black to white pixels) equivalent to that of the original
grayscale image. Such initialization can be done by randomly dis-
tributing black/white pixels such that the overall grayness is main-
tained. For faster convergence, we may also start with the halfton-
ing result of an existing method, such as the state-of-the-art error
diffusion by Ostromoukhov [2001].

We minimize the objective function using a simulated annealing
strategy. In each iteration, we randomly pick a pair of black and
white pixels from the image and swap them. Then we test whether
the swapping decreases the objective function. If not, the swapping
is undone. Since no extra black or white pixel is introduced, the
overall grayness should be maintained.

Structure Similarity We employ the structural similarity index
measure (SSIM) [Wang et al. 2004] to quantify the structure dif-
ference between the halftone result and the original grayscale im-
age. For each corresponding pair of pixels from the two given im-
ages, the SSIM measures the local structure similarity in their local
neighborhoods (x and y). In our case, we use a neighborhood win-
dow of size 11×11. The basic idea of SSIM is to separate the task
of similarity measurement into three comparisons: luminance, con-
trast and structure.



Suppose x and y are two nonnegative aligned image signals, each
with N elements. First, the luminance of each signal is compared.
This is estimated using the weighted mean intensity µx = ∑N

i=1 wixi.
Usually a normalized Gaussian weighting is used. The luminance
comparison function l(x,y) is then a function of µx and µy as in
Equation 2.

l(x,y) =
2µxµy + k1

µ2
x + µ2

y + k1
, (2)

where k1 is a small constant to avoid singularity. The formulation is
qualitatively consistent with Webers law, which models light adap-
tation in the HVS, as HVS is more sensitive to relative luminance
change rather than the absolute one.

The contrast comparison c(x,y) has the similar formulation, but it
makes use of the standard deviation σx and σy as an estimate of the
signal contrast.

c(x,y) =
2σxσy + k2

σ2
x +σ2

y + k2
, σx =

(

N

∑
i=1

wi(xi −µx)
2

)
1
2

(3)

where k2 is a small constant avoiding singularity.

The correlation between the images is used as a simple and effective
measure to quantify the structural similarity. Thus, the structure
comparison function is defined as follows:

s(x,y) =
σxy + k3

σxσy + k3
, σxy =

N

∑
i=1

wi(xi −µx)(yi −µy). (4)

where σxy defines the inner product, and k3 is a small constant
avoiding singularity.

The three components are combined by simple multiplication to
yield an overall similarity measure. Expanding it using Equa-
tions 2, 3, 4 and k3 = k2/2 yields the following equation:

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y)

=
(2µxµy + k1)(2σxy + k2)

(µ2
x + µ2

y + k1)(σ2
x +σ2

y + k2)
(5)

Note that the three components are relatively independent. For ex-
ample, the change of luminance or contrast does not affect the struc-
ture of the image. Finally, a mean SSIM (MSSIM) that evaluates
the overall image quality is obtained by taking the average over all
pixels. The valid range of MSSIM is [0,1], with higher values indi-
cating higher similarity.

Tone Similarity The above MSSIM cannot directly account
for the tone similarity, as the luminance component l is modu-
lated by the contrast c and structure s terms. Therefore, a simple
tone similarity term G is introduced into the objective function.
Term G(I, Ih) = 1

M ∑M(g(I) − g(Ih))
2 measures the tone preser-

vation, with valid range in [0,1]. It measures the MSE between
the Gaussian-blurred grayscale input g(I) and the Gaussian-blurred
halftone image g(Ih). In our implementation, a Gaussian kernel of
size 11×11 is employed.

Algorithm Listing 1 presents the pseudo-code for our algorithm.
The function TonePreserveInit initializes the halftone image
by randomly distributing black and white pixels. The only criterion
is to maintain the overall grayness, so that it is equivalent to that
of the original grayscale image. This ensures the overall image
grayness is preserved.

In each iteration, an arbitrary pair of black and white pixels is
swapped (RandomSwap). The swapping is being accepted or re-
jected according to a simulated annealing strategy. A certain num-
ber of iterations (K) is performed at a certain temperature before
the next annealing. Specifically, we set K equals number of pix-
els. Function UndoSwap undoes the swapping whenever the swap
does not improve. In our implementation, we use 0.8 and 0.01 for
the AnnealFactor and limit respectively.

Listing 1 Pseudo-code of optimization

Initialize Ih by TonePreserveInit(I)

Eold =Objective(I , Ih)

temperature = 0.2

Loop ( temperature > limit )

Loop (K times)

Ih = RandomSwap();

Enew =Objective(I, Ih)

∆E = Enew −Eold

// Accept or Reject according to annealing strategy

If (random()< emin(0,−∆E/temperature) )

Eold = Enew;

else

UndoSwap();

temperature = AnnealFactor× temperature;

4 Results and Analysis

To verify the performance of our method, we tested it on exam-
ples with different natures, including photographs, paintings, and
illustrations. Besides the subjective visual comparison, we also
carry out more objective evaluations including the tone consistency,
structural preservation, blue-noise analysis, and a user study. All
tested images in this paper are initialized with the halftone results
by Ostromoukhov method, except the ones in Figures 8 and 9.

Visual Comparison Figures 3, 4 and 12-15 visually compare
our results to that of the error-diffusion based method by Ostro-
moukhov [2001] and an advanced edge-enhancement based method
[Eschbach and Knox 1991]. We generally leave out the results of
ordered dithering for the sake of space, since they are clearly out-
performed by the Ostromoukhov’s method. The edge enhancement
halftone method that we used for comparison is implemented ac-
cording to [Ostromoukhov 2001]. It is a modified Ostromoukhov
method with the threshold modulation introduced in [Eschbach and
Knox 1991] in order to control the inherent edge enhancement.

In general, and in particular for all tested images, our method pre-
serves more structural details than that of Ostromoukhov method
and ordered dither. The edge enhancement method, unlike our
method, may over-emphasize the edges (Figure 14) and degrade
the resemblance to the original grayscale image. Since the edges
are detected with a threshold, the edge enhancement method may
fail to preserve the weak edges and blurry regions (Figure 7).

Figure 3 shows the gray ramp example and the corresponding
halftone images produced by different methods. In this textureless
example, since there are no edges, we compare to the ordered dither
instead of the edge enhancement method (which otherwise gener-
ates the same result as Ostromoukhov method). The performance
of our method is comparable to the Ostromoukhov method.

Tone Consistency We first evaluate the preservation of im-
age intensity. Note that both the tone consistency and structure
preservation evaluations are incorporated inside our objective func-
tion. Our optimization strikes a balance between these two met-
rics. In this experiment, we separately measure the tone con-
sistency among all tested methods. We measure the difference
between the Gaussian-filtered grayscale and the Gaussian-filtered
halftone images. The PSNRs of halftone images produced by all
four methods are tabulated and plotted in Figure 5. Some of the
eight tested grayscale images can be referred in Figures 4, 12-
15. From the statistics, our results consistently obtain high PSNRs
(highest PSNR in 7 out of 8 trials).
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Figure 3: Gray ramps. All images have the same resolution of
400×74.
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Figure 4: Image “arm”. (a) Original, (b) our method, and (c) edge
enhancement. All images have the same resolution of 200 × 307.

Structure Preservation To measure the structure preservation,
we employ the MSSIM measurement. Here the MSSIM is mea-
sured independently, learning whether the optimization succeed in
preserving the structure while preserving the tone at the same time.
Figure 6 tabulates and plots the MSSIM values for the same set
of test images. As can be seen, the performance of our method is
generally better than that of the edge-enhancement method.

Although the performance of edge enhancement halftoning is close
to ours, it suffers in areas with blurriness and weak edges. Fig-
ure 7(a) shows the annoying patterns introduced at the blurry region
while Figure 7(b) shows its failure to track the weak edges. In con-
trast, our method faithfully preserves the weak edges as well as the
blurry region.

Blue-Noise Analysis Blue-noise property is commonly used in
measuring the quality of halftoning methods [Ulichney 1987]. To
measure the blue-noise property, we compute the Fourier spectrum
and radially averaged power spectra of the halftoning results. The
radially averaged power spectra is usually used to visualize the blue
noise property in 1D. This 1D spectra is derived from the estimated
2D power spectrum P( f ), which is computed using the Fourier am-
plitude spectrum and the Bartlett’s method [Bartlett 1955] of aver-
aging periodograms. The power spectrum is first partitioned radi-
ally into many annuli. Then, the radially averaged power spectra is
defined as follow

Pr( fr) =
1

Nr( fr)

Nr( fr)

∑
i=1

P( f ). (6)
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Figure 5: PSNR comparison.
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Figure 6: MSSIM comparison.

The sample mean is computed for each annulus with a central radius
fr (also refer to as radial frequency). Here, Nr( fr) is the frequency
samples within the annulus of fr.

As Ostromoukhov method is well-known in maintaining the blue-
noise property, it is compared to our method in this blue-noise anal-
ysis (Figure 8). A constant-grayness image is processed to produce
the halftone images in this test. In order to give a fair comparison
without the influence from Ostromoukhov method, our halftone im-
age is initialized as a random noise (Figure 8). Both results show
the similar blue noise profile, i.e. low energy characteristics at low
frequencies. The underlying reason of our objective function be-
ing able to maintain the blue-noise property is due to its structure
term. When the dots are not evenly distributed (e.g. dots clump or
align to form line/curves) in the halftone result, it exhibits signifi-
cant difference, in terms of SSIM value, comparing to the original
smooth grayscale image. Hence, to maintain a close SSIM value to
the original smooth grayscale, the dots push away from each other
(like Poisson disk) and result in maintaining the blue-noise prop-
erty. This is evidenced by the sequence in Figure 9 that shows how
the white-noise initial converges to a blue-noise result.

User Study We further conducted a user study to learn whether
the structure-aware halftoning preserves better structural contents
than other methods from the user point of view. Eight different
subjects were asked to rate a 9-point scale ([1-9] with 9 as more
similar) for the texture and tone similarities of original grayscale
and the halftone images. Again, ordered dither, Ostromoukhov
method, edge enhancement halftoning, and our method were com-
pared. We presented each halftone result to the subjects with the
original grayscale image beside, and they were asked to rate with-
out telling which technique was used. Twelve sets of test images
were used, so there were altogether 96 data samples for analysis.
Table 1 shows the statistics from the collected data.

From Table 1, the mean scores for structure-aware halftoning, Os-
tromoukhov method, edge enhancement halftoning, and ordered
dither are 7.22, 6.59, 6.02, and 4.79, respectively. ANalysis Of
VAriance (ANOVA) is used to test if the difference of the means



Edge enhancement Our result

Original

(a)

Original

Edge enhancement Our result

c Van De Graaff / McGraw-Hill

(b)
Figure 7: Edge enhancement method may (a) introduce annoying
pattern at blurry regions and (b) fail to track the weak edges. Reso-
lution of all images in (a) is 294 × 245, and (b) is 269 × 203.

are statistically significant, under the assumption that the sampled
populations are Gaussian distributed. The F value is the test statis-
tic used to decide whether the sample means are within sampling
variability of each other, and it is computed as follow,

F(k−1,n− k) =
∑ni(xi − x)2/(k−1)

∑ (ni −1)s2
i /(n− k)

(7)

Here n is the total number of data samples in comparison. k is the
number of groups in comparison, we have four in total for the tested
halftone methods. xi is the mean value for group i (e.g. our method
has the mean 7.22), x is the mean for all data samples. si is the stan-
dard deviation for group i. ANOVA result among the four groups
is F(3,380) = 69.088, p < 0.001, this reveals that there is a sig-
nificant difference in the four group means. When comparing our
method to error diffusion (F(1,190) = 16.681, p < 0.001), edge
enhancement (F(1,190) = 69.478, p < 0.001) or ordered dither
(F(1,190) = 139.094, p < 0.001), our ANOVA result is also sig-
nificant. From the 95% confidence interval, it can be shown that
the result of structure-aware halftoning is clearly more perceptually
similar to the original than that of other methods.

Degree of Structure Preservation Halftoning for artistic
purpose usually favors texture details, in additional to the tone. So
in this experiment, we try to observe the degree of structure detail
preservation, by adjusting the weighting factors wg and wt . Recall
that wg + wt = 1. Figure 10 shows halftone results of using differ-
ent weighting values. The texture is not apparent when wt is 0.1.
As we further increase wt , more texture details are preserved in the
generated halftone images. It can be observed that the degree of
texture preservation seems to be saturated after wt > 0.5. All the
images generated in this paper use the same value wt = 0.5.

(a)

Halftone Fourier spectrum Radially averaged power spectra

(b)

Figure 8: A spectral analysis of halftoning a constant-grayness
image (grayness=0.75). (a) and (b) show the analysis of Ostro-
moukhov method and our method respectively. From left to right,
the halftone image, 2D Fourier amplitude spectrum, and the radially
averaged power spectra are shown.
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Figure 9: From white noise to blue noise. The input is a texture-
less image with constant grayness of 0.82. From left to right, the
halftone result converges from the white-noise initial to the blue-
noise result. The corresponding radially averaged power spectra
are shown underneath.
Color Halftone Our method can be naturally extended to color
halftoning. The general idea is the same. By optimizing the dis-
tribution of four primary printed color dots, cyan, magenta, yel-
low, and black (CMYK), we make a balance between the color tone
and the structure similarity. Note that, we perform the adjustment
in CMYK space, but we evaluate the objective function in RGB
space. The rationale is that our retina are equipped with three types
of color receptors responsible for long (R), medium (G), and short
(B) wavelengths, and hence our HVS is better explained in RGB
space.

We generate the initialization of CMYK according to [Shaked et al.
1996], then perform our optimization on each subtractive color. The
objective function is rewritten as:

Objective(I, Ih) = wgGRGB(I, Ih)+wt (1−MSSIMRGB(I, Ih)), (8)

where I and Ih are both in RGB space; GRGB is the color version
of G. It is simply the summation of G running over R, G, and B
channels separately. MSSIMRGB is defined similarly. Figure 11

95% Confidence
Standard Interval

Method Mean Deviation Lower Upper
Bound Bound

Our method 7.22 1.08 6.99 7.43
Ostromoukhov 6.59 1.03 6.38 6.80

Edge enhancement 6.02 0.89 5.83 6.20
Ordered dither 4.79 1.69 4.44 5.13

Table 1: User study statistics. The mean value shows the similarity
to the original image.
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Figure 10: “Snail shaped organ”. Halftoning with different struc-
ture weights.

shows our result in (b), and the color error diffusion in (c) [Shaked
et al. 1996].

Limitation Although our method is better than existing methods
in preserving texture and tone, our technique does not accommo-
date the internal issues of printers which may not use simple grids.
Moreover, in our current implementation, the weighting factor is
homogenously applied to the whole image. In some cases, it may
be desirable to adjust the degree of structure preservation in a spa-
tial varying manner. Our method is more expensive on timing due
to the iterative nature. The time required to generate a 256× 256
image is 27 seconds, and for a 512×512 image is 2 minutes, with
our current software implementation on a PC equipped with Intel
P4 3.2GHz CPU and 2GB memory.

5 Conclusion
In this paper, we presented an optimization-based method for main-
taining structure as well as the tone similarity. Compared to the
standard ordered dither and the state-of-the-art error diffusion, our
method preserves better texture content that is sensitive to HVS,
and at the same time, possesses the blue-noise property. Compared
to previous edge-enhancement based halftoning, our method does
not suffer from the deficiency of edge detector. With the support
of experiments and user study, our method outperforms alternative
methods and presents visually appealing results. One possible fu-
ture direction is to adaptively adjust the degree of structure preser-
vation in a spatial-varying manner. A fully automatic approach may
require further study in visual perception, while an interactive ap-
proach could be useful for users to control the appearance of texture
details at different regions of the image.
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Figure 13: Vincent van Gogh's “Portrait”. The resolution of all images is 508x603.

Figure 14: A natural photo of stone art “bat”. The resolution of all images is 400x223. Figure 15: Illustration “ribbon”.

The resolution of all images is 367x373.
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