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Abstract
This paper introduces a practical approach for super-
resolution, the process of reconstructing a high-resolution
image from the low-resolution input ones. The emphasis
of our work is to super-resolve frames from dynamic video
sequences which may contain significant object occlusion
or scene changes. As the quality of super-resolved im-
ages highly relies on the correctness of image alignment
between consecutive frames, we employ the robust optical
flow method to accurately estimate motion between the im-
age pair. An efficient and reliable scheme is designed to
detect and discard incorrect matchings which may degrade
the output quality. We also introduce the usage of ellip-
tical weighted average (EWA) filter to model the spatially-
variant point spread function (PSF) of acquisition system in
order to improve accuracy of the model. A number of com-
plex and dynamic video sequences are tested to demonstrate
the applicability and reliability of our algorithm.

1 Introduction
Super-resolution is the process of reconstructing a higher
resolution image from low-resolution input ones. It re-
ceived much attention [24, 16, 17, 20, 8, 9, 10, 22, 13, 2,
27, 26, 19, 11] in computer vision and image processing
communities over the past decades.

Most of the proposed super-resolution algorithms belong
to reconstruction-based algorithms [2] which are based on
sampling theorems. However, due to the constraints on the
motion models of the input video sequences, it is difficult
to apply reconstruction-based algorithms. Most algorithms
have either implicitly or explicitly assumed the image pairs
are related by a global parametric transformations, which
may not be satisfied in dynamic video.

It is challenging to design super-resolution algorithm for
arbitrary video sequences. Video frames in general can-
not be related through global parametric transformation due
to the arbitrary individual pixel movement between image
pairs. Hence local motion models, such as optical flow [15],
need to be used for image alignment. As proved by Zhao
et al. [26], an accurate alignment is the key to success of
reconstruction-based super-resolution algorithms. We em-
ploy the robust optical flow algorithm [4] in our work.

Unfortunately, some phenomena in video cannot be

modeled well by optical flow algorithms, such as occlu-
sion/disocclusion, illumination mismatches and motion par-
allax, etc. Incorrect alignment due to the above phenomena
may degrade the quality of super-resolved image. Hence
it must be detected and discarded during super-resolution
computation.

The point spread function (PSF) of the acquisition sys-
tem is spatially-variant due to the relative sensor-object mo-
tion. In order to better approximate the spatially-variant
PSF, we use elliptical weighted area (EWA) filter [12, 14,
28, 29], whose kernel can be elliptical in shape.

Based on the theoretical foundation in [26], we proposed
a practical and efficient super-resolution method to tailor
dynamic video sequences. The following are two main con-
tributions we made on top of the iterative backward projec-
tion (IBP) algorithm [16, 17]:

• An efficient and reliable scheme is designed to de-
tect and discard bad matchings in the initial align-
ment maps obtained by robust optical flow algorithm.
Hence, the quality of super-resolved images can be im-
proved by rejecting such errors.

• The introduction of elliptical weighted area filter
(EWA) in modeling the spatially-variant point spread
functions (PSF). The elliptical shape of the filter im-
proves the accuracy of model. Therefore, we call our
method EWA super-resolution.

The rest of the paper is organized as follows. We give
a brief review of the existing work on super-resolution in
section 2. EWA super-resolution algorithm is presented in
section 3. Experimental results are described in section 4.
Finally, we draw the conclusions and point out some future
directions in section 5.

2 Related work
Existing super-resolution algorithms can be roughly divided
into two main categories. One is reconstruction-based algo-
rithms while the other is learning-based algorithms.
Reconstruction-Based Super-Resolution The base of
reconstruction-based super-resolution is uniform/non-
uniform sampling theories. It assumes the original
high-resolution signal (image) can be well predicted from
the low-resolution input samples (images). Most super-
resolution algorithms fall into this category. A detail review



can be found in [5]. Among them, the frequency-domain
method is a pioneering approach [24]. Iterative backward
projection (IBP) algorithm [16, 17] are proposed later.
Recently, a unifying framework for super-resolution has
been presented. It formulates the problem using matrix-
vector notation [8]. To reduce noise and solve singular
cases, projection-onto-convex-sets algorithm (POCS) [20]
can incorporate prior knowledge into the computation by
applying constraints. The super-resolved images can also
be regarded as the MAP solution of stochastic optimization,
and the prior smoothness assumptions are used to reduce
the effects of inconsistent measurements [22, 13, 7]. In
most cases, the enforced smoothness constraint suppresses
high-frequency components and hence the results are
usually blurred. Regularization method can be used when
the scene is strongly rigid, such as the case of a binary
text image [7]. In [9], super-resolution can be solved by
recursively applying Kalman filter. Super-resolution can
also be performed simultaneously in time and in space [23].
By applying perturbation theory to the linear system
assembled by reconstruction-based algorithms, the explicit
limits for a major class of them are provided[18].

Several refinements have been proposed to address the
robustness issue of super-resolution algorithms. One ap-
proach handles the case of moving object by motion seg-
mentation [10]. An accurate motion segmentation is hence
crucial. Unfortunately, accurate segmentation is hard to ob-
tain in the presence of aliasing and noise. Recently, a robust
median estimator is used in an iterative super-resolution al-
gorithm [27]. Since it uses the median of the enlarged input
images as initial guess, only the resolution of background
rather than the whole target image is enhanced.
Learning-Based Super-Resolution This kind of algo-
rithms create high-frequency image details by using the
learned generative model from a set of training images.
Several algorithms have been proposed for specific types
of scene, such as faces and text [2, 19]. Recently, Free-
man et al. [11] proposed a novel approach for interpolating
high-frequency details from a training set. Learning-based
super-resolution algorithms are awkward to handle the dy-
namic real-world video sequences.

3 EWA Super-Resolution
The input to our algorithm includes: 1) multiple low-
resolution video frames, (including the target frame and its
neighboring frames), 2) the desired magnification factor and
3) two elliptical Gaussian filters chosen from the given filter
banks. The filters are chosen according to the video quality
and the magnification factor. The output is a high-resolution
image reconstructed at the target frame.

Our practical super-resolution algorithm is based on IBP.
There are two major reasons we use it as our base. Firstly,
it is a simple and effective algorithm operating in image
domain. Image processing techniques, such as convolu-

tion, warping, etc, can be used to accelerate the computa-
tion. In contrast, most of other reconstruction-based super-
resolution algorithms are formulated as the matrix solving
with/without regularization optimization. Although the ma-
trix formulation is beauty in theory, it may not be very prac-
tical for implementation. For example, if the image is high
in resolution, the matrices involved are usually sparse and
large in dimension. As our goal is to develop a practical sys-
tem, we prefer a stable and less demanding IBP approach.
Secondly, accurate motion segmentation, which is still an
open problem, is not required in IBP approach.

Our algorithm first attempts to improve the accuracy of
motion estimation and reduce the artifacts due to the pres-
ence of poor matchings. We employ the robust optical flow
technique [4] to establish the correspondence maps between
the low-resolution frames and the high-resolution image.
An efficient and reliable scheme is designed to measure the
quality of alignment between image and its warped coun-
terpart. An alignment quality map is hence recorded. A
pixel in low-resolution frame is then classified as valid if its
value in this map exceeds a threshold. Only the residual val-
ues at the valid pixels are used (backward projected) in the
iterative reconstruction of high-resolution image. This re-
jection scheme allows us to handle local model inconsisten-
cies, such as highlights, large occlusion/disocclusion, and
motion parallax.

Secondly, we attempt to approximate the spatially-
variant PSF and the backward projection filter defined at
each valid pixel using elliptical weighted area (EWA) fil-
tering techniques. We predefine a list of typical Gaussian
filters to approximate the PSFs of acquisition systems. Ac-
cording to the input video quality and the desired magnifi-
cation factor, the user selects one of them as input to our
algorithm. The spatially-variant PSF for each valid pixel is
computed by warping the selected filter kernel according to
its local affine approximation of the mapping from the low-
resolution frame to the desired high-resolution image. The
spatially-variant backward projection filter is handled in the
same manner.
3.1 Notations
Before we continue, let’s first discuss some useful defini-
tions and notations. Figure 1 is referred throughout the
problem formulation.
Definition 1 A low-resolution pixel y is influenced by a
high-resolution pixel x, if x is in the footprint [25] of the
PSF defined at y.
Definition 2 A low-resolution image g is influenced by a
high-resolution pixel x, if g contains a pixel y influenced by
x.

The following notations are used with the following
meanings throughout this paper:
• x denotes a high-resolution pixel
• y denotes a low-resolution pixel influenced by x
• f denotes the desired high-resolution image



• f (n) is the approximation of f obtained after n-th iter-
ations

• gk denotes the k-th low-resolution image

• g
(n)
k denotes the low-resolution image obtained by pro-

jecting f (n) onto low-resolution lattice
• hPSF

k,y is the spatially-variant PSF defined at gk(y)
• hBP

k,y is the spatially-variant backward projection filter
defined at gk(y)

• mk denotes the mapping from the low-resolution im-
age gk to the high-resolution image f

• Qk denotes the alignment quality map between gk and
its warped counterpart

Figure 1: EWA super-resolution. In each iteration, residual
values at valid pixels are backward projected to the high-
resolution image. The warped Gaussian filters are com-
puted in the forward and backward projections.

3.2 Iterative Reconstruction
Figure 1 illustrates the basic idea of our algorithm. It starts
with an initial estimation f (0) for the high-resolution im-
age f . Then a forward projection process (from the current
high-resolution image to low-resolution images) is carried
out to obtain a simulated low-resolution image. A simu-
lated pixel value g

(0)
k (y) can be obtained by this forward

projection for each valid low-resolution pixel gk(y). If f (0)

is the true high-resolution image, the simulated pixel value
g
(0)
k (y) should be identical to the input one gk(y). The

residual value r
(0)
k (y) between gk(y) and g

(0)
k (y) is then

computed. It is backward projected onto the high-resolution
image to improve the approximation in the next iteration
f (1). Instead of a naı̈ve isotropic filter kernel, we use an
anisotropic EWA filter hBP

k,y defined at gk(y). This process

is repeated to minimize the error function e(n),

e(n) =
√∑

k

(gk(y) − gn
k (y))2

The forward projection process can be expressed by

g
(n)
k (y) =

∑
x

f (n)(x)hPSF
k,y (mk(y) − x)

The residual after n iterations is computed by

r
(n)
k (y) = gk(y) − g

(n)
k (y) (1)

The iterative update to the high-resolution image f is ex-
pressed by

f (n+1)(x) = f (n)(x) + λδ(n)(x) (2)
where

δ(n)(x) =

∑
k,y WkQk(y)r(n)

k (y)h
2BP
k,y (mk(y) − x)∑

k,y WkQk(y)hBP
k,y (mk(y) − x)

In Equation (2), the value of f (n)(x) at each high-resolution
pixel x is updated with the contribution of all valid low-
resolution pixels y influenced by x. The contribution of the
valid pixel gk(y) is weighted by the frame weight Wk, its
alignment quality measurement Qk(y), and backward pro-
jection kernel hBP

k,y . The frame weight Wk can be defined to
be inversely proportional to the temporal distance between
the k-th frame and the target frame. The scaling factor λ is
to control the increment step size.
3.3 Quality Motion Estimation
The correspondence maps {mk} between the low-
resolution frames {gk} and the high-resolution image f are
established before the iteration in the following manner.
Firstly, the correspondence maps between low-resolution
neighboring frames and the target frame (low-resolution as
well) are determined. Then they are projected onto the
desired high-resolution image using a Gaussian pyramid.
From now on, ’inspection image’ denotes one of the low-
resolution neighboring frames while ’reference image’ de-
notes the target low-resolution frame. Correspondence map
between the inspection and reference frames is established
using optical flow [15], since this allows both camera and
independent object motions. One of the sophisticated opti-
cal flow techniques is robust optical flow proposed by Black
et al. [4]. It employs statistics to avoid large errors caused
by outliers and to allow for discontinuities in the flow field.
Using multi-resolution approach, it can also handle large
motion. Hence we adopt it to determine the correspondence
maps in a robust manner.

Even a robust optical flow technique is used, the resultant
correspondence maps in general may still contain flaws due
to the violation of basic assumptions (such as Lambertian
surfaces). Therefore, a quality measure of correspondence
is needed. We compute an alignment quality map [21]
for a pair of images. Based on this map, a low-resolution
pixel is classified as valid if the corresponding value ex-
ceeds the threshold. Only the residual values (Equation 1)
of valid pixels are backward projected to improve the high-
resolution image during the iterative reconstruction.

The alignment quality map is computed between the
original image and the warped counterpart. We adopt a
quality measure based on correlation coefficient of the orig-
inal image with the warped image [6]. The correlation coef-
ficient assigns a value in [-1, 1] to each pixel. Two variations
of correlation coefficient are incorporated. We first com-
pute the variances within the correlation window of each
pixel. The image variance and mean are used to compute a



mean normalized variance. Then, the quality measure Cval
is computed as follows,

if ((σ2
1 ≤ T1 and σ2

2 ≤ T1) or
(σ2

N1 ≤ T2 and σ2
N2 ≤ T2)) then

{
if (|µ1 − µ2| ≤ kµ1) then

Cval = 1.0;
else

Cval = 0.0;
}
else

Cval =
∑

p(I1(p)−µ1)(I2(p)−µ2)

Nσ1σ2

where Ii(p) returns the pixel value at p in image Ii; σ2
1 and

σ2
2 are the respective image variances within the correla-

tion window; µ1 and µ2 are the respective means; σN =
σ2/(µ2 + c) is the mean normalized variance with µ as the
mean and c as a stabilizing constant to avoid singularity due
to zero mean; T1, T2 and k are parameters, and N is the
number of pixels in the correlation window.

3.4 Elliptical Weighted Area Filtering
In this subsection we discuss how to compute hPSF

k,y and
hBP

k,y which play important roles in our super-resolution al-
gorithm. IBP algorithm assumes the PSF and backward pro-
jection filter are fixed in their kernel shapes and sizes. PSF
is estimated by studying a picture of a known object [16].
However, this approach may not be feasible in general, be-
cause the original acquisition system must be known. Fur-
thermore, the PSF is spatially-variant due to the relative
sensor-objection motion in real-world video sequences. Es-
timation of PSF from the input images is hard due to the
complexity of arbitrary real-world motion.

We design the PSF and the backward projection filter to
be Gaussian and their warped versions are EWA filters [12,
14]. By adopting an anisotropic and spatially varying filter,
EWA, we are able to better model the spatially-variant PSF
and backward projection filter. EWA changes its supporting
region according to the local motion. Additionally, EWA
is less computational intensive than the ideal low-pass sinc
function. It gives similar result as the sinc function. EWA
can be implemented using only a 1D lookup table that can
be hardware-accelerated. These nice properties of EWA are
the underlying reasons of our method outperforming IBP.

EWA filter was originally introduced to address the alias-
ing problem in texture mapping [12, 14]. Recently, it has
been extended to represent and render texture functions on
irregularly point-sampled surfaces [28]. EWA filter has also
been used in volume rendering to reduce aliasing artifacts
of splatting [29]. In our algorithm, it is used in the im-
age warping between the low-resolution images {gk} and
the high-resolution image f . Valid pixel gk(y) is regarded
as a circular region, and its support region in f is hence
an ellipse whose orientation is determined by the mapping

mk(y) as illustrated in Figure 2.

Figure 2: EWA filter for super-resolution.

An elliptical Gaussian GV (y) with variance matrix V is
defined as:

GV (y) =
1

2π|V | 12 e−
1
2 yV −1yT

where |V | is the determinant of V . We denote the variance
matrices of input PSF hPSF (y) and backward projection
filter hBP (y) as V PSF and V BP , respectively. If we apply
a warp u = yM , where M is a 2 × 2 matrix, the warped
PSF and warped backward projection filter can then be com-
puted as follows:

hPSF
w (u) = GV P SF (uM−1) = |M |GMT V P SF M (u) (3)

hBP
w (u) = GV BP (uM−1) = |M |GMT V BP M (u) (4)

Thus hPSF
k,y (u) = hPSF

w (u)|gk(y) and hBP
k,y (u) =

hBP
w (u)|gk(y) are determined by the matrix M defined at

the low resolution pixel gk(y).
Matrix M can be computed in the following manner. For

each low-resolution pixel gk(y) = y0, we find its corre-
sponding point u0 in the reference image. Then we establish
the local coordinate systems in the inspection and reference
images centered at y0 and u0, respectively. If we define
u = yM , then M is the Jacobian of the mapping from local

y space to local u space, and hence M =
(

ux vx

uy vy

)
.

4 Results
To verify our algorithm, we tested it with five video
clips, namely Beach (720×480, 30 fps, Figure 3), Canyon
(720×480, 30 fps, Figure 4), Carphone (176×144, 30 fps,
Figure 8(a)), Glasgow (176×144, 30 fps, Figure 7(a)), and
Salesman (176×144, 30 fps, Figure 7(d)). All experiments
and timing statistics are carried out and recorded on execut-
ing the unoptimized code on Dell Inspiron 8100 with Pen-
tium III 1.0 GHz CPU and 512 MB memory.

We first compare our method with naı̈ve bicubic inter-
polation in Figure 5. The Beach example (Figure 3) shows
the target frame in the video clip with panning motion. To
generate our result, two neighboring low-resolution frames
plus the target frame are used. The displacement between
the consecutive frames is almost 8 pixels in some cases. The
super-resolved image is magnified two times, i.e. 1440 ×
960 in resolution. The program takes 84 sec. to generate



Figure 3: One target frame of Beach.

Figure 4: One target frame of Canyon.

the result. We blow up part of the image to highlight the
difference between image by our method (Figure 5(b)) and
that of bicubic interpolation (Figure 5(a)). Result from bicu-
bic interpolation exhibits blocky artifact (see the back of the
chair) when comparing with our result. One may argue that
by sharpening the bicubic interpolated image, a better im-
age may be resulted. Figure 5(c) shows the result of sharp-
ening Figure 5(a). Although the image looks sharper, the
quality is not improved because error is also exaggerated.

In the Canyon example, we compare our method with
the ground truth image. The low-resolution input frames
are simulated by down-sampling the original frames (origi-
nal resolution: 720×480) to 360×240. One target frame of
the down-sampled version is shown in Figure 4. We blow
up part of the image to highlight the difference between im-
age by our method (Figure 6(b)), that of bicubic interpola-
tion (Figure 6(a)) and the ground truth image (Figure 6(c)).
Experimental result shows that image generated by our al-
gorithm outperforms that of bicubic interpolation by 1.03
dB in terms of peak signal-to-noise ratio (PSNR).

We also compare our method with the original iterative
backward projection algorithm (IBP). Two examples, Glas-
gow (Figure 7(a)) and Salesman (Figure 7(d)), are tested as
there is fast local motion in both videos. Again, we blow up
the region containing quick motion to highlight the differ-
ence between our result and that from IBP. In both exam-
ples (Figure 7(b) & (e)), IBP returns erroneous results (see
the left person in Figure 7(b) and the moving hand in Fig-
ure 7(e)) due to its inability to address the local motion. By
accounting local motion with optical flow, our method cor-
rectly aligns the pixels and generates better super-resolved
images (Figure 7(c) & (f)). It takes 25 seconds to recon-

(a) Bicubic interpolation (b) Our algorithm (c) Sharpened (a)

Figure 5: Comparison with bicubic interpolation. In this ex-
periment, we magnify the target frame of Beach two times
in both dimensions using bicubic interpolation (a) and our
algorithm (b). The result by bicubic interpolation is blocky
and blurry. With sharpening (c), errors are exaggerated. Our
algorithm generates image with better quality.

(a) Bicubic interpolation (b) Our algorithm (c) Ground truth image

Figure 6: Comparison with the ground truth image. The
peak signal-to-noise ratio (PSNR) values for bicubic inter-
polation and our algorithm are 37.78 dB and 38.81 dB, re-
spectively.

struct the super-resolved images in both examples.
Finally, we compare our algorithm with robust super-

resolution [27] in the Carphone example (Figure 8(a)).
There is fast local motion and occlusion around the finger.
We magnify it two times in both dimensions. Four neigh-
boring frames and small filter kernels are used to compute
the super-resolved image (Figure 8(b)). The corresponding
neighboring frames are not shown due to the page limit. We
carefully choose program parameters to explicitly rejecting
bad matchings. Our algorithm generates better result than
that of robust super-resolution (Figure 8(c)).

Our algorithm can treat mild motion blur and spatially
varying blur in real-world video clips. The input video clip
in Figure 3 presents much noise and temporal aliasing. We
use large filter kernels to generate the result in Figure 5(b).
However, severe blurring needs more efforts[3].

5 Conclusions
In this paper, we present a practical super-resolution algo-
rithm that is capable of reconstructing high-resolution im-
ages from complex and dynamic video sequences, which
may contain large object occlusion and scene changes. By
integrating the robust optical flow and EWA filtering tech-
niques into the iterative reconstruction process, the super-
resolved images are generated in a short period of time. Our
EWA super-resolution algorithm is a practical solution to
the super-resolution problem due to its robustness, simplic-
ity and efficiency. A number of complex and dynamic video



(a) Target frame of Glasgow (b) IBP algorithm (c) Our algorithm

(d) Target frame of Salesman (e) IBP algorithm (f) Our algorithm

Figure 7: Comparison with IBP algorithm. Image (a) is the tar-
get frame from Glasgow video and image (d) is from Salesman
sequence. Both clips are in QCIF resolution (176×144). We mag-
nify the images two times using IBP ((b)&(e)) and our algorithm
((c)&(f)). Parts of the super-resolved images are blown up for clar-
ity. Images by IBP exhibit apparent errors at the left-most person
in (b) and at the hand in (e).

(a) Target frame (b) Our algorithm (c) Robust super-resolution

Figure 8: Comparison with robust super-resolution. Image (a)
is one target frame from Carphone sequence which contains fast
local motion and occlusion around the finger. Our super-resolved
image (b) is generated by carefully choosing program parameters
to explicitly rejecting bad matchings. Image (c) is the result pro-
duced by robust super-resolution. Our image is visually better than
that of robust super-resolution. However, you can still find few ar-
tifacts around the finger in (b) when examining it carefully.

sequences are tested to demonstrate the applicability of our
algorithm. The performance of our algorithm depends on
the accuracy of parameter estimation. Estimating those pa-
rameters is difficult in real-world cases. Nevertheless, our
algorithm can still produce better results than those of bicu-
bic interpolation with/without sharpening.

To further improve the speed performance, we are now
investigating less computational intensive optical flow algo-
rithm, such as hierarchical Lucas-Kanade optical flow with
multi-window techniques. Another direction to speed up is
to accelerate the evaluation of EWA by using programmable
graphics hardware. This will be a cost-effective direction
to achieve real-time performance. Quantization informa-
tion in the compressed video bitstream provides additional
information[1]. We are currently working on incorporating
it into our algorithm to further improve the image quality.
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